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Quantum probability theory has been successfully applied outside of physics to account for numerous
findings from psychology regarding human judgement and decision making behavior. However, the
researchers who have made these applications do not rely on the hypothesis that the brain is some type
of quantum computer. This raises the question of how could the brain implement quantum algorithms
other than quantum physical operations. This article outlines one way that a neural based system could
perform the computations required by applications of quantum probability to human behavior.
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Although quantum mechanics is a theory of physics, the math-
ematics underlying this theory provides the foundation for a gen-
eral theory of probability (Pitowski, 2006; Suppes, 1966). Most
applications of probability theory outside of physics are based on
classical theory Kolmogorov (1933/1950). Until recently, quantum
probability theory has rarely been applied outside of physics to
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fields such as the behavioral and social sciences. However, a body of
researchers in the new field called “quantum cognition” have made
a reasonably convincing case that quantum probability theory
provides a viable newway to formulate theoretical explanations for
puzzling behavior that have resisted explanation by classical
probability theories (Busemeyer and Bruza, 2012; Khrennikov,
2010). See Ashtiani and Azgomi (2015) for a recent survey of the
field.

There are two different views that a quantum cognition
researcher can hold regarding the use of quantum probability
theory to model human behavior. One view is that quantum
ation of operations used in quantum cognition, Progress in Biophysics
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Fig. 1. Interference effects for one participant. Top panel shows choice-confidence
condition, bottom panel shows confidence-alone condition. Horizontal axis repre-
sents confidence on a 0 ¼ certain absent to 100 ¼ certain present scale. Vertical axis
shows relative frequency of a confidence rating. Blue curve shows data, black curve
shows quantum predictions, grey curve shows Markov predictions.
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probability rules are simply useful for predicting human behavior,
and they do not have to be represented at a neurophysiological
level (see, e.g., Atmanspacher and Filk, 2010). The other view is that
the brain actually implements these procedures. In particular, the
state vector is somehow physically present in the brain.

Researchers who take the view that brain actually implements
quantum computations have at least two different ideas about how
this can be done. One hypothesis (e.g., Hammeroff, 1998; Jibu and
Yasue, 1995)1 proposes that the brain is using quantum physical
mechanisms to represent cognitive states and produce operations.
Another hypothesis (e.g., Eliasmith, 2013) proposes that classical
neural network models can implement the computations required
by the quantum probability rules. The purpose of this article is to
describe a classical neural network that implements quantum
computations.

1. Confidence judgments during signal detection

To motivate this presentation, it is helpful to begin with an
empirical example that illustrates the kind of evidence used to
support the application of quantum probability to human judg-
ment and decision making. One of the key types of findings used to
support a quantum interpretation are interference effects, which
are essentially violations of the law of total probability.

We recently found evidence for interference effects obtained
from a human decision making experiment using a signal detection
type task in which a decision maker must decide on each decision
trial whether a target is present or absent based on noisy and un-
certain information (e.g., to decide whether or not an enemy is
located at a position based on a poor and fuzzy image). Decisions
are made across several hundred trialse on some trials the signal is
present, and on other trials, no signal is present. Accuracy, decision
time, and confidence are measured on each trial. Performance on
the signal detection task has traditionally been modeled using
classical Markov type of randomwalk/diffusion models of decision-
making (see, e.g., Ratcliff and Smith, 2004). The basic idea is that the
decision maker accumulates evidence for each hypothesis until the
accumulated evidence reaches a threshold. The first hypothesis to
reach the threshold is chosen, the time to reach the threshold de-
termines the decision time, and the difference in evidence soon
after the decision determines the confidence (Pleskac and
Busemeyer, 2010).

Alternatively, Busemeyer et al. (2006) developed a quantum
walkmodel for signal detection (summarized later), which assumes
that a person's evidence state is represented by a quantum wave
function that evolves across levels of confidence in the direction
driven by the presented information. Busemeyer and Bruza (2012)
derived a key prediction that provides a critical method to empir-
ically distinguish and test the two theories. The experiment con-
sists of two conditions: In the choice-confidence condition, the
person makes a choice (makes a binary decision between signal
present versus signal absent) at time t1 and then rates confidence at
time t2; in the confidence-alone condition, the person only pro-
vides a confidence rating at time t2. For both conditions, the focus is
on themarginal distribution of confidence ratings that are obtained
at time t2. Confidence is defined as the judged probability that a
signal is present rated on a 0% (certain signal not present) to 100%
(certain signal is present) scale. The Markov model obeys the
Chapman-Kolmogorov equation, which is a dynamic form of the
law of total probability, and it predicts no difference between the
two conditions. The quantum model predicts an interference effect
1 The quantum field models of memory by Freeman and Vitiello (2006) seem to
lie someplace between an abstract mathematical model and a physical brain model.

Please cite this article in press as: Busemeyer, J.R., et al., Neural implement
and Molecular Biology (2017), http://dx.doi.org/10.1016/j.pbiomolbio.201
produced by the choice on the confidence rating, which makes the
confidence distributions differ between the two conditions.

Kvam et al. (2015) empirically tested for the predicted inter-
ference effects by comparing confidence ratings produced by the
choice-confidence versus confidence-alone conditions. They ob-
tained strong support for the interference effect predicted by the
quantum model. Confidence judgments were, on average, lower in
the choice-confidence condition (M ¼ 83:96; SD ¼ 15:56) than in
the confidence-alone condition (M ¼ 85:15; SD ¼ 14:95), and a
Bayesian statistical analysis of the difference resulted in a 95%
highest density interval that did not cover zero.2 Fig. 1 shows the
result for one of the nine participants. The horizontal axis repre-
sents the degree of confidence, and the vertical axis represents the
relative frequency of reporting a particular level of confidence.
Notice the large bump produced by the choice in choice-confidence
condition, which is absent for the choice-alone condition. Also
notice that the confidence seems to oscillate as it moves up the
scale in agreement with the quantum model and contrary to the
predictions of the Markov model.

2. Quantum probability basics

Quantum theory was originally developed by a brilliant collec-
tion of scientists including Planck, Einstein, de Broglie, Bohr, Hei-
senberg, Born, Schr€odinger and many others, but a firm
mathematical foundation was not established until the axiomatic
works by Dirac and von Neumann (Von Neumann, 1932/1955;
Dirac, 1930/1958). Of course, the theory has evolved extensively
since that time to include new concepts, such as quantum noise
decoherence produced by open systems (Nielsen and Chuang,
2000). However, here we simply describe the very basic ideas. To
keep the mathematics at an elementary level, we will restrict our
discussion to finite spaces. Although the dimension of the space is
finite, it could be very large, e.g., 10 billion, which is less than the
number of neurons in the brain! We can translate classical into
quantum probability theory as follows.

We start by replacing the classic sample space (a finite set of
cardinality N) with a quantum Hilbert space (a finite vector space of
2 This is the Bayesian version of 95% confidence interval.

ation of operations used in quantum cognition, Progress in Biophysics
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dimension N, with an inner product). Next we replace the classic
definition of an event e as a subsetwithin the sample space ewith
the quantum concept of event e as a subspace within the vector
space. Thenwe replace the classic probability function pwith a state
vectorje the function pmaps events intoprobabilities, and theunit
length vector j also maps events into probabilities but more indi-
rectly. The quantum probability is computed by the algorithm:
pðAÞ ¼

���PðAÞ,j2
���, where PðAÞ is the projector corresponding for the

subspace A. Following the measurement of event A; the classical
state reduces to the conditional probability function pA defined by

pAðBÞ ¼ pðA∩BÞ
pðAÞ ; and the quantum state reduces to a conditional state

jA ¼ PðAÞ,jffiffiffiffiffiffiffi
pðAÞ

p : Finally for dynamics, we replace the classical Kolmo-

gorov forward equation with the Schr€odinger equation.

2.1. Application to confidence judgments during a signal detection
task

Referring back to the signal detection problem, consider amodel
for a sequence of confidence judgments during a single trial of this
task. For this example, we wish to compute the probability that the
cognitive system makes a particular confidence rating,
r12f0;1;…;100g; at some point in time t1 followed by another
confidence rating r22f0;1;…;100g at time t2. To model this task,
we employ a 101 dimensional Hilbert space. A confidence mea-
surement is represented by 101 unidimensional projectors, PðrjÞ,
for rj2f0;1;…;100g which satisfy orthogonality PðriÞPðrjÞ ¼ 0 for
isj and completeness

P
i¼0;100

PðriÞ ¼ I. At the start of a decision trial,
before the image is presented, the system starts in an uncertain
initial state represented by a unit length vector j in the 101
dimensional confidence space.

After the image appears, the decision maker's confidence
evolves in the direction driven by the evidence for a period of time
t1. In a quantum model, the Schr€odinger equation produces a uni-
tary transformation, Uðt1Þ; that rotates the initial state vector j in
the direction favoring the evidence for a period of time t1 to pro-
duce a revised state jðt1Þ ¼ Uðt1Þ,j: The projection of the state on
the subspace for rating r1 produces the vector fðt1Þ ¼ Pðr1Þ,jðt1Þ,
and the probability of this rating equals its squared length

pðr1Þ ¼ kfðt1Þk2. The reduced state immediately after observing r1
equals fðt1Þffiffiffiffiffiffiffiffi

pðr1Þ
p , which again has unit length.

Then the decisionmaker continues processing the image, and the
state continues to evolve to a new state at time t2,

jðt2Þ ¼ Uðt2 � t1Þ, fðt1Þffiffiffiffiffiffiffiffi
pðr1Þ

p . The final confidence rating is evaluated by

applying another projector, say Pðr2Þ, to the statejðt2Þ to produce the
projection fðt2Þ ¼ Pðr1Þjðt1Þ and the probability of choosing this

rating equals pðr2jr1Þ ¼
���fðt2Þ2���. Therefore, the sequential proba-

bilityof choosing rating r1 and thenreportinga ratingof say, r2; equals

pðr1; r2Þ ¼ pðr1Þ,pðr2jr1Þ
¼

���jPðr2ÞUðt2 � t1ÞPðr1ÞUðt1Þ,jj
���2: (1)

Longer sequences of measurements can be obtained by
extending the products of unitary evolution followed by projection.

One of the key properties generated by the quantum probability
rules is what is known as the interference effect, which is a viola-
tion of the law of total probability. The classical Markov model for
this task obeys the law of total probability:

pðr2Þ ¼
X100
rj¼0

p
�
rj; r2

�
:

Please cite this article in press as: Busemeyer, J.R., et al., Neural implement
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But now consider the predictions of the quantum model for the
confidence-alone condition at time t2:

pðr2Þ ¼ kPðr2Þ,Uðt2Þ,jk2

¼ kPðr2Þ,Uðt2 � t1Þ,I,Uðt1Þ,jk2

¼
���Pðr2Þ,Uðt2 � t1Þ,

X
P
�
rj
�
,Uðt1Þ,j

���2
¼ P100

r1¼0
p
�
rj; r2

�þ Int

(2)

where Int contains the sum of crossproduct terms. If the cross-
product interference terms are zero, then Equation (2) agrees with
the law of total probability. However, the interference can be pos-
itive, negative, or zero. Human behavioral studies have reported
systematic interference effects (violations of total probability) in a
variety of different judgment and decision tasks (Pothos and
Busemeyer, 2009; Busemeyer et al., 2009; Wang and Busemeyer,
2016). Our goal in this article is to build a plausible neural
network model that can implement the evolution of a quantum
state, the probability of a response, and the state reduction, as
described by the above equations.
3. Neural network constraints

Herewe briefly review some of the constraints needed to build a
plausible neural network implementation of quantum probability
theory.

There are roughly 10 to 20 billion neurons in the neocortex. Each
neuron is roughly connected to about 10,000 others. The connection
weight between two neurons refers to the synaptic efficiency (e.g.,
the proportion of ion channels opened by a fixed input) for the
sending neuron to impact the receiving neuron. Roughly 85% of
these connections are excitatory (mainly pyramidal neurons), and
the remainder inhibitory (interneurons). Excitatory connections are
always excitatory, and inhibitory connections are always inhibitory;
in other words, a neuron can't change from excitatory to inhibitory
or visa versa.

The neurons are organized into micro columns containing about
100 neurons, and the neurons within these micro columns are
highly interconnected with excitatory and inhibitory connections
to form a recurrent network. The micro columns themselves are
connected together to form corticocortical columns containing 100
micro columns. Macro columns contain about 100 corticocortical
columns.

Each neuron has a membrane potential (voltage level). The
membrane potential remains at some resting potential until driven
by inputs. Excitatory inputs increase and inhibitory inputs decrease
themembrane potential, and themembrane potential at any time is
the net result. The membrane potential must exceed a threshold for
a brief spike (<1ms) to occur in a neuron, which is then transmitted
to other neurons. After the spike, the neuron returns for a period of
time back to (or below) the resting potential. Only about 15% of
neurons are active at any time. Spike rate for a micro column of
neurons is determined by the balance of excitatory and inhibitory
inputs to the membrane potential for a micro column.

Most neural network models rely primarily on spike rate as the
carrier of information between neurons. The membrane potential
at a micro column is converted into a spike rate, which is sent to
othermicro columns. Some neural models work directly at the level
of individual spiking neurons (e.g., Eliasmith, 2013). For example, to
produce a spiking neuron, the net difference between the excit-
atory and inhibitory potentials are integrated across time until it
exceeds a threshold to produce a single spike. Other neural models
ation of operations used in quantum cognition, Progress in Biophysics
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3 This does not imply that it is possible to construct a local and realist classical
theory for the Bell type of experiments in physics.
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work with a firing rate produced by integrating across a micro
column (e.g.,O'Reilly et al., 2012). The firing rate (e.g., proportion of
neurons that have fired within a micro column) is computed as an
increasing function of the difference between the excitatory input
and a threshold level set by the inhibitory input for a micro column.
In either case, eventually, the information coded by spike rate must
be decoded and inverted back into a membrane potential at the
receiving end.

Neural oscillations form another important property of neural
systems (Nunez and Srinivasan, 2006). There is considerable evi-
dence showing that neural synchrony is important for many neural
computations (Fries, 2009). For example, theta oscillations
(4e8 Hz) increase during both verbal and spatial memory tasks
(Kahana et al., 2001), and alpha oscillations (8e13 Hz) are corre-
lated with attention focus (Ward, 2003). Although a single neuron
maybe incapable of detecting synchronization (Shadlen and
Movshan, 1999), synchronous oscillations produced by recurrent
neural networks may implement important cognitive processes
such as attention, learning, and memory (Grossberg and Versace,
2008).

3.1. Firing rate and membrane potentials

The neural implementation described below uses pairs of real
numbers, with positive or negative values, to compute the unitary
evolution. The membrane potentials are real valued and with
positive or negative values. However, firing rates are strictly non-
negative. According to the quantum model, it is important to
define the output from unitary evolution in terms of the pairs of
real numbers, and define the firing rate by the squared magnitude
of the output.

Let us recall the basic processes used in neural communication.
The membrane potential for a group of neurons is converted into a
firing rate, and only the firing rate is passed along the axons.
However, after reaching the target, the firing rate is then decoded
back into a membrane potential. Therefore, we postulate that the
transformation of the information from firing rate back to mem-
brane potential inverts the original mapping from membrane po-
tential to firing rate, and recovers the original membrane potential
that generated the firing rate. Models that describe a mapping from
membrane potential to firing rate are usually monotonic and
invertible (e.g., O'Reilly et al., 2012). Therefore, we postulate that
when working with the output from unitary evolution, we are
modeling the membrane potential for a large group of neurons
rather than firing rate.

3.2. Neural synchrony and quantum inference

Neural oscillators provide a critical mechanism for implement-
ing the computations required by unitary evolution. The integra-
tion of oscillatory activities produced by different neural oscillators
converging on a common target provide a way to compute the
positive or negative interference patterns expressed in Equation
(2). Synchronized oscillators will produce constructive interfer-
ence, while asynchronous oscillators will produce destructive
interference.

Fig. 2 illustrates the basic idea. Imagine two input nodes, j1 and
j2 that converge on a common output node f. First, suppose input 1
is a signal j1ðtÞ ¼ cosð:15,2p,tÞ, and suppose input 2 is a synchro-
nous signal j2ðtÞ ¼ cosð:15,2p,tÞ at the same frequency with the
same phase. In quantum terms, j1ðtÞ is the amplitude corresponding
to one path, and j2ðtÞ is the amplitude corresponding to a second
path, and both paths sum to produce the total amplitude
fðtÞ ¼ ðj1ðtÞ þ j2ðtÞÞ ¼ 2,cosð:15,2p,tÞ for the final output. The
probability of the final output is obtained by squaring
Please cite this article in press as: Busemeyer, J.R., et al., Neural implement
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f2ðtÞ ¼ ðf1ðtÞ þ f2ðtÞÞ2 ¼ 4,cosð:15,2p,tÞ2. The result is shown as
the blue curve in the bottom panel on the left hand side of Fig. 2.
Notice that the probability of the sum of paths (shown as the blue
curve in the bottom left panel), ðj1ðtÞ þ j2ðtÞÞ2 ¼ 4,cosð:15,2p,tÞ2,
is greater than the sum of the probability of each separate path (red
curve), j2

1ðtÞ þ j2
2ðtÞ ¼ 2,cosð:15,2p,tÞ2; and so paths produce

constructive interference. Now suppose input 1 is the same signal
j1ðtÞ ¼ cosð:15,2p,tÞ as before, but input 2 is an asynchronous
signal, so that j2ðtÞ ¼ cosð:15,2p,t þ 1:8,p=2Þ, which is the same
frequency but out of phase. The sum of these two signals cancels out
as shown on the right hand side of Fig. 2. The probability produced
by the sum of these asynchronous paths (shown as the blue
curve in the bottom right panel) f2ðtÞ ¼ ðj1ðtÞ þ j2ðtÞÞ2 ¼
ðcosð:15,2p,tÞ þ cosð:15,2p,t þ 1:8,p=2ÞÞ2 is almost zero, and less
than the sum of the probabilities of each separate path (red curve),
j2
1ðtÞ þ j2

2ðtÞ ¼ cosð:15,2p,tÞ2 þ cosð:15,2p,t þ 1:8,p=2Þ2, and so
the asynchronous signals produce negative interference.

4. Previous ideas related to neural implementations

Does there exist some classical dynamic system that can
implement the quantum algorithm? One answer to this question
was established by Graben and Atmanspacher (2006), who showed
that coarse grained measurements of classical dynamical systems
can produce incompatible observables like that used in quantum
probability theory.3 However, their theory was based on a general
form of classical dynamic systems, and they didn't intend to
develop a concrete neural network implementation of the quantum
algorithm.

More directly relevant is the work by de Barros and Suppes
(2009) and De Barros (2012), who pointed out that neural oscilla-
tors (e.g., see Fig. 2) can produce interference patterns like that
obtained from unitary evolution. However, they did not formulate a
complete neural network model capable of implementing the
general unitary evolution algorithm.

Takahashi and Cheon (2012) proposed a nonlinear neural
network that used squared amplitudes used to compute the proba-
bility of response in a quantum model of cognition. However, they
did not propose any specific network for computing the squared
magnitudes or for describing the evolution of the quantum state.

Stewart and Eliasmith (2013) claimed that their spiking neural
network model can learn a set of connection weights that could
closely approximate the input and output behavior produced by a
quantummodel. However, as they pointed out, their general neural
network model is not at all constrained to obey the properties
implied by quantum rulese it can also compute results that disobey
these rules. We would like to construct a plausible neural network
model that is restricted to implement only the quantum rules.

4.1. Non commutativity of standard neural networks

It is simple to show that a standard neural network, containing
two or more layers, can produce the kinds of non-commutative
processing that is essential for quantum models. Consider the
following simple case. Suppose a n� 1 input vector of activation, X;
is fed into a feedforward network, represented by a n� n connec-
tion weight matrix, W1; to produce a n� 1 net activation
h1 ¼ W1,X, which is nonlinearly transformed, for example, by a
logistic type function f to produce a n� 1 output activation
Y1 ¼ f ½h1�. Then the previous output Y1 is fed into another network,
represented by a n� n connection weight matrix, W2, to produce a
ation of operations used in quantum cognition, Progress in Biophysics
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Fig. 2. Effects of synchrony on quantum probability. Left panel shows synchronous signals, and right panel shows asynchronous signals. Top panel shows input 1, second panel
shows input 2, third panel shows sum of inputs, fourth panel shows squared sum of inputs (blue) or sum of squared inputs (red). The difference between blue and red in the bottom
panel is the interference effect.
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net activation h2 ¼ W2,Y1, which is nonlinearly transformed by a
logistic function to produce a second n� 1 output
Y2 ¼ f ½h2� ¼ f ½W2,f ½W1,X��. Processing in the opposite order would
produce a different result with Z2 ¼ f ½W1,f ½W2,X�� .

The fact that neural networks generally produce non-
commutativity implies that they are capable of producing all of
the hallmark effects used to justify the quantum models, including
question order effects, conjunction fallacies, and violations of total
probability. Although neural network models can generate non-
commutative effects like a quantum model, general networks are
unconstrained and they are not required to obey all of the rules that
a quantum system must obey. Neural nets can also generate pre-
dictions that violate quantum rules.

Specifically, the quantum algorithm is constrained to assign
probabilities to sequences of events, where each event is defined by
a subspace of the Hilbert space. Furthermore, these probabilities
always satisfy the properties of a proper probability measure. In
fact, the quantum algorithm is the unique way to do this Gleason
(1957) (for Hilbert spaces with dimension greater than 2).
5. A possible neural implementation

The neural network described below is designed to implement
the computations required by a quantum cognition model. We
develop our neural net using the example of the sequential confi-
dence rating task described earlier.
Please cite this article in press as: Busemeyer, J.R., et al., Neural implement
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We now outline the basic steps of one possible neural imple-
mentation. This implementation should be considered more like an
existence proof rather than an empirically supported neural model.
The ideas are admittedly speculative, and there may be many other
ways to implement the quantum algorithm. Also this implementa-
tion is designed to be more of a macro level rather than micro level
representation. Nevertheless, macro level neural network models,
similar to this, are frequently used by computational neuroscientists
(see., e.g., Verdonck and Tuerlinckx, 2014; Deco et al., 2008).
5.1. Unitary evolution

In order to implement the quantum algorithm as a neural
computational model, we need to break down the general equation
into more manageable pieces that are easier to implement, and then
put the pieces back together in large neural network model. So we
start bybreakingdownthealgorithm into simpler-to-computepieces.

First consider the N � N unitary matrix UðtÞ. Any unitary matrix
can be derived from a Hermitian matrix H by the matrix expo-
nential UðtÞ ¼ expð�i,t,HÞ. The N � N Hermitian matrix H has a
spectral decomposition

H ¼ U,L,Uy ¼
X

lj,
�
UjU

y
j

�
¼

X
lj,VðjÞ;

where VðjÞ ¼ UjU
y
j is the projector for the j-th eigenvector Uj of H,

and j ¼ 1;N: Therefore, the unitary matrix can be expressed as
ation of operations used in quantum cognition, Progress in Biophysics
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Fig. 3. Neural Network. Left side shows input to network. Middle section shows neural
oscillators produced by a recurrent network formed by a group (micro column) of
neurons. Right side shows output produced by sum of weighted connections of
network.
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UðtÞ ¼
X

e�i,lj,t,VðjÞ:
The eigenvalues, lj are real because H is Hermitian. If, in addi-

tion, H is further constrained to be real and symmetric (which has
been the case for applications in quantum cognition), then VðjÞ is a
real valued N � N matrix too. The eigenvalues are called the phases
of the unitary transformation, and they are important for
computing interference effects as shown in Fig. 2.

Using the results from above, the projection can be expressed as

fðt1Þ ¼ Pðr1Þ,Uðt1Þ,j ¼
X
j

e�i,lj,t1,Pðr1Þ,VðjÞ,j: (3)

How does this help? Well, now we only need to build a neural
network to compute for each eigenvector

fðjÞ ¼ e�i,lj,t1,Pðr1Þ,VðjÞ,j;

and then sum, across eigenvectors, the contributions of these in-
dividual neural networks to finally form the output vector
fðt1Þ ¼

P
fðjÞ: Of course, the same type of neural network can then

be used to compute the next product Pðr2Þ,Uðt2 � t1Þ, fðt1Þffiffiffiffiffiffiffiffi
pðr1Þ

p .

Quantummodels generallyworkwith complexvalues,whichcan
be expressed as a pair of real values.4 Therefore, we define the input

vector j as a pair of real valued vectors: j ¼
	
a
b



, where a is the real

part and b is the imaginary part ofj. Alsowe can define the complex
exponential as cosine/sine pair e�i,lj,t ¼ ðcosðlj,tÞ;� sinðlj,tÞÞ.
Finally, we define the output vector for the j-th eigenvector as the

pairfðjÞ ¼
	
gðjÞ
uðjÞ



,wheregðjÞ is the real part of theoutput, anduðjÞ is

imaginary part. Then using the rules of multiplication for complex
numbers, we can express the output shown in Equation (3) as

	
gðjÞ
uðjÞ

#
¼

"
cos

�
lj,t

�
,Pðr1Þ,VðjÞ,aþ sin

�
lj,t

�
,Pðr1Þ,VðjÞ,b

cos
�
lj,t

�
,Pðr1Þ,VðjÞ,b� sin

�
lj,t

�
,Pðr1Þ,VðjÞ,a

3
5:
(4)

Now we only need to construct a neural network for computing
gðjÞ; and the same type could be used to compute uðjÞ: The network
for computing gðjÞ is itself just the sum of two networks.

The proposed neural network for computing the output vector
gðjÞ is shown in Fig. 3. The network foruðjÞ is similar. This model is a
macro level model, and so the circular nodes in the figure represent
large groups of interconnected neurons (e.g., micro columns) rather
than individual neurons. On the left are shown the pair of inputs to
the network. The i-th pair of input nodes for the pair of vectors ða; bÞ,
is shown as the pair of input values ðai; biÞ . Eachpair of inputs ðai; biÞ
is assumed to enter a pair of neural oscillators to produce a pair of
oscillations ðai,cosðlj,tÞ; bi,sinðlj,tÞÞ: Each pair of oscillations
ðai,cosðlj,tÞ; bj,sinðlj,tÞÞ is then connected to each of the nodes for
theoutputgk of the vectorgðjÞ corresponding to the j-th eigenvector.

gkðjÞ ¼
X
i

wki,cos
�
lj,t

�
,ai þwki,sin

�
lj,t

�
,bi

The connection weight, wki, connecting input node i from a to
output node k shown in the figure represents the matrix element in
the i-th column and k-th row of the matrix Pðr1Þ,VðjÞ:
4 The complex number z can be written as z ¼ xþ i,y;where the real number x is
the real part of z and the real number y is the imaginary part. We chose to develop a
neural network based on the real x and imaginary y parts. Alternatively, we can
write z ¼ jzj,ðcosðqÞ þ i,sinðqÞÞ and build a neural network on the basis of the
magnitude jzj and phase q. Kak (1995) suggested using the latter approach.
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We can summarize the neural computations as follows. First the
type of neural network shown in Fig. 3 is used to compute both gðjÞ
and uðjÞ for each eigenvector Uj using a separate but similar
network for each one. A collection of N networks like those shown
in Fig. 3 are used to compute the pairs of outputs ðgðjÞ;uðjÞÞ cor-
responding to each eigenvector Uj of the Hermitian matrix H. The
outputs from these N networks are summed across the j eigen-

vectors to produce the final output fðtÞ ¼
	
gðtÞ
uðtÞ



: This produces

the projection, fðt1Þ ¼ Pðr1Þ,Uðt1Þ,j. The second projection

Pðr2Þ,Uðt2 � t1Þ, fðtÞ
pðr1Þ is computed using the same type of networks.
5.2. Choice probability

According to the quantum rules, the probability of choosing

response rk at time t1 equals pðrkÞ ¼
���PðrkÞj ðt1Þ k2¼ kfðt1Þ k2¼���fk

���2:The next problem to address concerns the question of how a

neural system uses the state vector to generate a single choice ac-
cording to the probabilities given by the quantum rules. First we
need to convert each amplitude, fk, into a firing rate,���fk

���2 ¼ g2
k þ u2

k , for response rk. Second, we need to provide a

neural mechanism that uses the firing rate to choose a single

response with a probability given by pðrkÞ ¼
���fk

���2.
The two coordinates of the amplitude fk ¼ ðgk;ukÞ are real, but

they can be positive or negative. Therefore we need two networks,
one for each coordinate, with each network transforming a real
value into its squared magnitude. The outputs from the two net-
works can be summed to produce

���fk

���2. The top panel of Fig. 4
shows a simple network that takes gk (less than one in magni-
tude) and converts it into an output that closely approximates g2k
ation of operations used in quantum cognition, Progress in Biophysics
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Fig. 4. Left panel: Neural network to convert amplitudes to probabilities; right panel:
approximation to squared amplitude produced by network.
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(the computer code for this network is shown in the appendix). The
input amplitude is passed up through an inhibitory link as well as
down through an excitatory link, so that the two middle nodes
contain the same magnitude with different signs. Then the recur-
rent lateral inhibition attenuates the value of the negative middle
node and amplifies the value of the positive middle node to
generate an approximation to the squaredmagnitude that is passed
to the output on the far right node. The bottom panel of Fig. 4 shows
the close approximation to the squaredmagnitude produced by the
network (described in detail in the appendix).

A simple mechanism for choosing a single response on a single
trial can be realized by an independent parallel neural activation
system. The output

���fk

���2 represents the firing rate of a neural node
corresponding to response rk, and the activation produced by this
firing rate is accumulated over time. Each response is associated
with an independent accumulator, and these accumulators race
until one accumulator reaches a threshold for the first time. The
first accumulator to reach the threshold wins the race and is cho-
sen. Theorem 2 in Marley and Colonius (1992) states that the
probability that the accumulator for response rk wins the race and

is chosen equals

pðrkÞ ¼

���fk

���2X
j

���fj

���2

¼
���fðkÞ���2

where the second step follows

from
P
j

�����fk

���2 ¼ 1 because of quantum evolution.5
5 Choice probability for multidimensional (degenerate) projectors requires a
more complex winner take all system. We leave the details for this more complex
case for future research.
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5.3. State reduction

The final step of the neural network implementation requires
the generation of the reduced state immediately after observing rk,

which equals fðt1Þffiffiffiffiffiffiffiffi
pðr1Þ

p . Recall that the projectors for the confidence

measurement are one dimensional (non degenerate) projectors.
Therefore, if response rk is chosen, then the reduced state is simply
Pðr1Þjðt1Þffiffiffiffiffiffiffiffi

pðr1Þ
p ¼ ½0 / 1 / 0 �y, where there is a one located in po-

sition corresponding to the chosen response r1. This state reduction
can be implemented in a neural network by using the single winner
of the race among accumulators to form a vector of neural nodes
with one active node corresponding to the winner, and all
remaining nodes set to zero.6
6. Future extensions and final comments

6.1. Future extensions

The development presented here was based on the example of
a sequence of confidence judgments made at two different time
points during a signal detection task. The model for this task used
the same basis for representing confidence at different time
points. However, the development is more general, and it can be
applied to situations that require changing the basis representing
different measurements. Consider for example, the probability of
a judgment about two incompatible events, A and then B (see
e.g., Busemeyer et al., 2011). For example, a judge could be pro-
vided evidence about a criminal case and then asked a pair of
questions: event A might represent an answer to the question “is
the defendant guilty,” and event B might represent an answer to
the question “should the defendant be punished by death.”
Define PA as the projector for event A and PB as the projector for
event B, and suppose the events are incompatible so that
PAPBsPBPA. In this case, we need to change the basis used to
represent each event. Each projector can be decomposed into a
unitary matrix U of eigenvectors and a diagonal matrix L of ei-
genvalues (with zero or one values, exclusively), so that
PA ¼ UALAU

y
A and PB ¼ UBLBU

y
B. The probability of A and then B

equals

pðA;BÞ ¼
����UBLBU

y
B

��
UALAU

y
A

�
j
���2

¼
������LBUBALAU

y
Aj

������2
where UBA ¼ Uy

BUA is a unitary operator that transforms the co-
ordinates from the A to the B basis. Therefore this computation
involves unitary transformation followed by measurement in
essentially the same manner as required for the sequence of two
confidence ratings (see Equation (1)).

If the events in the preceding example were compatible, so that
PðAÞPðBÞ ¼ PðBÞPðAÞ; then we would need to form a tensor product
space to represents the conjunctions of events: A∩B; A∩B;A∩B; A∩B.
Our example, which was based on a sequence of confidence ratings,
did not require the use of a tensor product space. However, once the
state and the projectors are defined for a tensor product space, then
the proceeding development once again applies. This is because the
basic principles for unitary evolution and measurement of the state
are the same for tensor product spaces.
6 State reduction for multidimensional (degenerate) projectors requires a more
complex normalization process. We leave the details for this more complex case for
future research.
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The most important limitation of the neural network imple-
mentation presented here is that the projectors are assumed to be
one dimensional (non-degenerate). Additional work is needed on
the choice probability and state reduction parts of the development
to implement more general measurements that are multidimen-
sional (degenerate).
6.2. Final comments

In the beginning of the article, we noted that researchers in
the field of quantum cognition do not rely on the idea that the
brain is some type of quantum computer. Instead, quantum
cognition researchers only make use of the mathematical prin-
ciples abstracted from quantum theory and applied outside of
physics to human behavior. However, this leaves open the
question of how the brain would compute quantum probabilities,
if not by some type of quantum brain computer? The purpose of
this article was to present one possibility for a classical neural
system to implement a quantum algorithm, which is a kind of
existence proof. We do not claim that there is strong evidence
supporting this proposal, and there may be many better ways to
do this.

The main objective that we accomplished was to formulate one
way to implement the evolution of the quantum state according to
unitary evolution by a neural network and then compute the
probability of a response from the network that agrees with the
quantum rules. We accomplished this by postulating a neural
network that includes neural oscillators, which are used to generate
the phases produced by unitary evolution. The phases are impor-
tant for producing interference effects (violations of the classic law
of total probability), which we often observe in human judgment
and decision making studies (see also de Barros and Suppes, 2009).
One key assumption that we made for this neural implementation
is that we view this as a macro level neural model, which describes
the real valued membrane potentials rather than the non negative
firing rate of a pool of neurons. We assume that the firing rate is
decoded back into a membrane potential at the receiving end of a
pool of neurons.
Appendix

Below is the Matlab code used to compute squared magnitude
from a real valued amplitude. The parameter vector parm ¼ [
0.0852 1.9564 12.6635e12.6209 ] produces Fig. 4.
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