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Decision-making relies on a process of evidence accumulation which
generates support for possible hypotheses. Models of this process
derived from classical stochastic theories assume that information
accumulates by moving across definite levels of evidence, carving out
a single trajectory across these levels over time. In contrast, quantum
decision models assume that evidence develops over time in a
superposition state analogous to a wavelike pattern and that judg-
ments and decisions are constructed by a measurement process by
which a definite state of evidence is created from this indefinite
state. This constructive process implies that interference effects
should arise when multiple responses (measurements) are elicited
over time. We report such an interference effect during a motion
direction discrimination task. Decisions during the task interfered
with subsequent confidence judgments, resulting in less extreme
and more accurate judgments than when no decision was elicited.
These results provide qualitative and quantitative support for a
quantum random walk model of evidence accumulation over the
popular Markov random walk model. We discuss the cognitive and
neural implications of modeling evidence accumulation as a quantum
dynamic system.
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Decisions in a wide range of tasks (e.g., inferring the presence
or absence of a disease, the guilt or innocence of a suspect,

and the left or right direction of enemy movement) require evidence
to be accumulated in support of different hypotheses. Arguably, the
most successful theory of evidence accumulation in humans and
other animals is Markov random walk (MRW) theory (and diffu-
sion models, their continuous space extensions) (1, 2). MRWs can
be viewed as psychological implementations of a first-order Bayes-
ian inference process that assigns a posterior probability to each
hypothesis (3). MRWs can account for choices, response times, and
confidence for a variety of different decision types (2, 4). Moreover,
these models of the accumulation process have been connected to
neural activity during decision-making (5, 6).
According to MRW models, when deciding between two hy-

potheses, the cumulative evidence for or against each hypothesis
realizes different levels at different times to generate a single par-
ticle-like trajectory of evidence levels across time (Fig. 1). At any
point in time, the decision-maker has a definite level of evidence,
and choices are made by comparing the existing level of evidence
against a criterion. Evidence above the criterion favors one option,
and evidence below it favors the alternative. Other responses are
modeled in a similar manner; for example, confidence ratings are
modeled by mapping evidence states onto one or more ratings (4).
However, this idea that judgments and decisions are simply read out
from the existing level of evidence—henceforth referred to as the
“read-out” assumption—is inconsistent with the well-established
idea that preferences and beliefs are constructed rather than
revealed by judgments and decisions (7).
We present an alternative model of choice and judgment based

on quantum random walk (QRW) theory (8–11), which posits that
preferences and beliefs are constructed when a judgment or de-
cision is made. Note that this work does not make the assumption
that the brain is a quantum computer; instead, we simply use the
mathematics of quantum theory to explain and predict human

behavior. According to QRW theory, at any point in time before a
decision, the decision-maker is in a superposition state that is not
located at a single level of evidence. Instead, each level of evidence
has a potential to be expressed, formalized as a probability ampli-
tude (Fig. 1). New information changes the amplitudes, producing a
wavelike process that moves the amplitude distribution across time.
In some ways the QRW is like a second-order Bayesian model

(12). According to the latter, the decision-maker assigns a proba-
bility (rather than an amplitude) to each level of evidence for each
hypothesis. However, like the MRW model, second-order Bayesian
models are perfectly compatible with the read-out assumption, and
as an optimal model, this would suggest that a decision should not
change the probability assigned to each evidence level. In contrast, a
QRW, like all quantum models of cognition (13), treats a judgment
or decision as a measurement process that constructs a definite state
from an indefinite (superposition) state. When a decision is made,
the indefinite state collapses onto a set of evidence levels that cor-
respond to the observed choice, producing a definite choice state.
Confidence ratings work similarly, with the indefinite state collapsing
onto a more specific set of levels corresponding to the observed rating.
These different theories of choice and judgment have strong

implications for sequences of responses. Consider the situation
when decision-makers have to make a choice (e.g., decide that
hypothesis A or B is true) and later rate their confidence that a
given (usually the chosen) hypothesis is true. According to the
read-out assumption, a choice is reported on the basis of existing
evidence that does not change the internal state of evidence itself.
This applies to the MRW, a second-order Bayesian model, and
many other accumulation models as well. Thus, after pooling
across a person’s choices, the distribution of confidence ratings
should be identical to conditions in which the person makes
no choice at all. By contrast, the state of the system in a QRW
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is changed when a choice creates a definite state. Subsequent
processing starts from the definite state, and the amplitudes
spread out again. Thus, if information processing continues after
the initial stage, the QRW predicts an interference effect where
the marginal distribution of confidence judgments following a
choice will differ from a condition in which no choice is made.
A proof of the predicted interference effect for QRWs is in SI

Appendix. The proof shows that the interference effect of choice on
confidence is the result of the interaction between the creation of a
definite state and subsequent evidence accumulation after making a
choice. Subsequent or second-stage processing is a necessary con-
dition for the effect. Critically, second-stage processing occurs when
people are asked to report a confidence rating following a choice,
giving rise to response reversals (14) and other properties (15). We
also provide a proof that MRWs predict no difference between the
marginal distributions of confidence ratings (i.e., no interference)
regardless of the presence of second-stage processing. This proof
holds for a large range of MRWs, including ones with decay (16),
leakage of evidence (17), and trial-by-trial variability in the decision
process (18).

Empirical Test of Predicted Interference Effect
We tested these opposing predictions concerning interference
effects using a perceptual task that requires participants to judge
the direction of motion in a dynamic dot display (Fig. 2). Spe-
cifically, nine participants completed 112 blocks of 24 trials each
over five 1-h experimental sessions, a total of 2,688 trials per
person (SI Appendix). During each trial, participants viewed a
random dot motion stimulus that consisted of moving white dots
in a circular aperture on a black background (19). A percentage
of the dots moved coherently in one direction (left or right), and the
rest moved randomly. Difficulty was manipulated between trials by
changing the percentage of coherently moving dots (2%, 4%, 8%,

or 16%). In the choice condition—half of the randomly ordered
blocks—participants were prompted 0.5 s from stimulus onset via a
low-frequency beep (400 Hz) to decide whether the coherently
moving dots were moving left or right and entered their choice
by clicking the corresponding mouse button. In the no-choice
condition—the other half of the blocks—participants were
prompted 0.5 s from stimulus onset via a high-frequency beep
(800 Hz) to make a motor response (click the left or right mouse
button as instructed). In all trials, the stimulus remained on
screen for a second stage of processing after the choice or click.
After an additional 0.05, 0.75, or 1.5 s following the first re-
sponse, participants were prompted via a second beep (400 Hz)
to rate their confidence that the coherently moving dots were
moving right on a semicircular scale that appeared at the time of
the prompt, ranging from 0 (certain left) to 100% (certain right)
in unit steps. Note that to match the overall processing time of
the stimulus across conditions, the confidence prompt was time-
locked to the initial choice or click entry.
For the behavioral analyses, we collapsed confidence responses

across the dot motion direction, recoding confidence onto a half scale
(50% guess to 100% certain). All behavioral analyses were conducted
using hierarchical Bayesian general linear models (20). The co-
efficient b is the linear effect of a predictor on the criterion. We also
report the highest density interval (HDI) for all estimates, which
specifies the range covering the 95% most credible values of the
posterior estimates. A normal link was used for confidence judgments
after transforming them to log odds, and a logistic link was used for
choices.
On average, confidence increased with motion coherence

(b= 0.66; 95% HDI = ½0.31, 1.02�). In the choice condition, the
proportion of correct choices increased with coherence
(b= 0.50; 95% HDI = ½0.04, 1.16�). Confidence judgments were,
on average, lower in the choice (M = 83.96; SD= 15.56) than in
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Fig. 1. Diagram of a state representation of a Markov and a quantum random walk model. In the Markov model, evidence (shaded state) evolves over time
by moving from state to state, occupying one definite evidence level at any given time. In the quantum model the decision-maker is in an indefinite evidence
state, with each evidence level having a probability amplitude (shadings) at each point in time.
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Fig. 2. Diagram of the task. A fixation point indicated the choice/no-choice condition, then the stimulus was shown for 0.5 s. A prompt (t1) then asked for a
decision on the direction of the dot motion (choice condition) or a motor response (no-choice condition). The stimulus remained on the screen. A second
prompt (t2) then asked for a confidence rating on the direction of the dot motion. Finally, feedback was given on the accuracy of their responses.
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the no-choice condition (M = 85.15; SD= 14.95); the value of
the interference main effect coefficient is reported at the in-
dividual and group level in Table 1 (see also SI Appendix, Table
S1). SI Appendix, Figs. S1 and S6 also show this effect at the
distribution level. This effect of choice on confidence provides
evidence against the read-out assumption and is consistent with the
quantum claim that choice changes the state of the cognitive system.
We also examined the QRW prediction that the interference ef-

fect does not occur with choice alone but that the interaction be-
tween choice and subsequent processing creates interference. To
gauge whether participants were sampling information during the
second stage, we examined whether there was an interaction between
coherence and duration of the second stage when confidence was
predicted on a full scale from 0 (completely sure, incorrect direction)
to 100 (completely sure, correct direction). The magnitude of this
coefficient indicates second-stage processing under the following
logic: on average, people sample information in favor of the correct
answer during this second stage, and this evidence should be stronger
with higher coherence (drift), resulting in an interaction between
coherence and the duration of the second stage.
The value of this second-stage processing interaction coefficient is

reported in Table 1. With the exception of participant 3, there is a 1:1
correspondence between credible second-stage processing and a
credible interference effect. Note that participant 3 is by several
measures an anomaly: this participant was unable to distinguish be-
tween dot motion directions in most conditions and in fact had lower
than 50% correct choices in some conditions (SI Appendix, Fig. S4).
Further evidence for the requirement of second-stage processing

comes from a study in which we failed to obtain interference when
no second-stage processing was induced. This study was almost
identical to the one described above, with two differences: first,
there was no trial-by-trial feedback, and second, the decision time
was 0.8 s rather than 0.5 s. The result of these differences is that
participants did not pay attention to the stimulus after giving their
initial choice or click response. This is evidenced by the lack of
credible second-stage processing in this experiment (SI Appendix).
Finally, we examined how the accuracy of the confidence

ratings changed as a result of this interference. To this end, we
coded whether the confidence rating fell on the correct side of the
scale relative to the actual left/right motion direction. In the choice
and no-choice conditions, confidence ratings were on the correct
side of the scale in 76.36% and 76.25% of cases, respectively. The
accuracy of the confidence ratings in these conditions was credibly
the same when we fit each one with a one-parameter Bernoulli
distribution (Mdiff = 0.11%; 95% HDI ½−0.04%, 0.20%�). The dif-
ference between the average confidence ratings and confidence
accuracy is called bias, and it measures how well calibrated confi-
dence ratings are to the proportion of times the target event actually
occurs. The average bias statistic was 7.66, implying mild over-
confidence (95% HDI ½−2.09, 17.66�). Focusing on the interference
effect, we found that overconfidence was lower, and thus,

confidence was better calibrated in the choice condition than in
the no-choice condition (8.20 vs. 7.13; Mdiff = 1.07; 95% HDI
½0.29, 1.85�) (for a similar result, see also ref. 21).

Direct Comparison of QRW and MRW
The interference effect of choice on subsequent confidence provides
empirical support for a QRW theory of evidence accumulation over
an MRW theory. However, the question remains if the QRW can
provide a parsimonious account of the choice and confidence data.
Therefore, we compared the QRW to a matched MRW using
Bayesian model comparison methods. Both models used drift,
diffusion, starting point variability, and attenuation parame-
ters. Versions of the MRW with these parameters or more re-
stricted ones (e.g., without attenuation) have been shown to
account well for choice, response time, and confidence data, so
superior performance would indicate that the QRW is a partic-
ularly viable model (2, 4).
Below we describe each model in mathematical detail (see also SI

Appendix, Fig. S3, for a visual walk-through). In line with the
established mathematical principles governing both the MRW and
QRW theories, each one updates the state following a choice at
time t1 to produce a conditioned state that is consistent with the
observed choice—for quantum theory, this is referred to as Lüder’s
rule. However, the two models differ with respect to the effect of
this conditioning on the marginal distribution of confidence ratings.
As our proof shows, the Markov model obeys the law of total
probability, so that after pooling across choices the effect of con-
ditioning on the choice completely disappears as if no choices were
made. This is because the choice does not change the location of
the evidence, only the information an external observer has about it.
In contrast, the QRW violates the law of total probability because
choice interacts with later evidence accumulation, making pooled
confidence ratings after choice diverge from the no-choice case.
This is because a definite state consistent with the choice is created,
and subsequent dynamics are applied to the revised state, thereby
producing the interference effect.

MRW. The MRW used m= 103 evidence states x∈ f−1,0, . . . 101g.
This state space allowed us to assume that states x= 0,1, . . . 100
corresponded directly with the n= 101 confidence ratings (0, 1, . . .
100%). The two boundary states (−1,101) served as reflecting
boundaries that restricted the process to the range of the confidence
scale, and these states were mapped onto confidence ratings of 0
and 100%, respectively. Using 103 states produces a Markov pro-
cess that closely approximates a continuous state process, and in-
creasing the number of states by refining the state space produces
practically the same predictions.
According to the MRW, a decision-maker is in exactly one

evidence state at any given time. However, the decision-maker’s
state is unknown to the observer, and a probability distribution
across evidence states is therefore used to represent the state. This

Table 1. Summary of model comparison and statistical effects

Participant Interference* Second-stage processing† Log Bayes factor

1 −0.18 [−0.26, −0.11]‡ 0.12 [0.08, 0.18]‡ 212
2 −0.15 [−0.23, −0.07]‡ 0.08 [0.03, 0.14]‡ 41
3 −0.15 [−0.22, −0.07]‡ 0.01 [−0.04, 0.06] −131
4 −0.14 [−0.23, −0.07]‡ 0.10 [0.04, 0.15]‡ 190
5 −0.11 [−0.19, −0.04]‡ 0.07 [0.02, 0.13]‡ 837
6 −0.08 [−0.16, −0.01]‡ 0.13 [0.07, 0.18]‡ 223
7 −0.07 [−0.15, 0.01] −0.01 [−0.07, 0.05] −148
8 −0.05 [−0.14, 0.02] 0.04 [−0.08, 0.10] 339
9 −0.01 [−0.09, 0.07] −0.02 [−0.06, 0.04] 150
Group level −0.11 [−0.18, −0.04]‡ 0.06 [0.01, 0.12]‡ 1,713

*Mean posterior coefficient and 95% HDI for main effect of the choice manipulation on half-scale confidence.
†Mean posterior coefficient and 95% HDI for the interaction between coherence and second stage processing
time on full-scale confidence.
‡The 95% HDI excluded zero.
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distribution is defined by a mixed state vector ϕðtÞ of dimension
m× 1, which gives the probability of being in state x at time t,

PrðxjtÞ=ϕxðtÞ. [1]

The probability distribution ϕð0Þ specifies the decision-mak-
er’s initial state, which is set as a uniform distribution centered
on x= 50. The width w is a free parameter indexing trial-by-trial
variability in the initial state.
As the decision-maker considers information, the process

moves from state to state. An m×m transition matrix P specifies
the probability that the process moves from one state to another
after some period, so that the probability distribution over evi-
dence states after time t is

ϕðtÞ=PðtÞ ·ϕð0Þ. [2]

Choice probability and confidence are determined as follows.
Define a response operator MR, which is a diagonal matrix with
0.5 located in the row for confidence level 50, ones located in
rows for confidence levels 51 through 101, and zeros otherwise.
The probability of choosing right at time t1, denoted pðRjt1Þ,
equals the sum of the projection MR ·ϕðt1Þ. The probability of
choosing left at time t1 is 1− pðRjt1Þ. If right motion is chosen,
then this provides information on the location of the evidence
(e.g., evidence is at or above state 50), and the probability dis-
tribution over the states is updated to ϕðt1jRÞ=MR ·ϕðt1Þ

pðRjt1Þ . Note that
if a person were to choose left motion, the response operator MR
would be replaced by ML; the two are identical except that the
1 and 0 entries along the main diagonal are flipped.
For confidence ratings, define My as a diagonal matrix with 1

located in the row(s) corresponding to confidence y and zeros
otherwise. In the choice condition, the probability of choosing
confidence level y at time t2 following a right motion choice then
equals the sum of the projection My ·Pðt2Þ ·ϕðt1jRÞ. In the no-
choice condition, the probability of choosing confidence level y
at time t2 equals the sum of the projection My ·ϕðt2Þ.
The transition matrix is constructed from an m×m intensity

matrix Q using the Kolmogorov forward equation so that

PðtÞ= expðQtγÞ, [3]

where exp is the matrix exponential function and γ is a parameter
describing the proportion of time spent processing information up to
time t. Consistent with recent work in modeling postdecisional pro-
cessing (15), this was set to γ = 1 during the first stage of processing
(t0 to t1) but was free to vary during the second stage to account for
attenuation in incoming information following the first response.
The entries qj,k of the intensity matrix are

qj,j =−σ2, [4a]

qj−1,j =
1
2
�
σ2 − δ

�
, [4b]

qj+1,j =
1
2
�
σ2 + δ

�
. [4c]

This definition of the intensity matrix was chosen so that the
discrete state Markov process closely approximates a continuous
state Wiener diffusion process (8). The drift rate δ determines
the probability that the process steps toward the true dot motion
direction. We scaled the drift rate directly from the percentage
of coherently c moving dots so that

δ= μ · c. [5]

If the dots are moving left, c is negative. The parameter μ is a
free parameter indexing sensitivity to the coherence. The

parameter σ2 is a diffusion rate controlling the dispersion of
the process. This MRW operates on a finite state space, so we
set the states x=−1 and x= 101 as reflecting boundaries to allow
the process to continue its evolution after it reaches the finite
limits, −q1,1 = q1,2 = σ2 and q102,103 =−q103,103 = σ2.

QRW. The QRW also usedm= 103 evidence states as in the MRW,
similarly assuming that states x= 0,1, . . . 100 corresponded directly
with the 101 confidence ratings and that states x=−1 and x= 101
were reflecting boundaries which mapped onto confidence ratings
of 0 and 100%.
According to the QRW, a decision-maker is not necessarily in any

one evidence state at any given time. This uncertainty on the part of
the decision-maker is modeled with a superposition state vector ψðtÞ
of size m× 1, which gives the probability amplitude at the xth evi-
dence level at time t. The probability of observing state x at time t is
the squared length of the amplitude in the corresponding row:

PrðxjtÞ= jψ xðtÞj2. [6]

The state vector ψð0Þ specifies the initial superposed evidence
state. We set the probability amplitudes across these states to
be uniformly and symmetrically distributed around x= 50. The
width w of this distribution is a free parameter representing
initial uncertainty.
As information is processed, the superposition state drifts over

time until a response is elicited. The m×m unitary matrix op-
erator U evolves the amplitudes over time, so that

ψðtÞ=UðtÞ ·ψð0Þ. [7]

Choice probability and confidence are determined as follows.
We define MR in a similar manner as in the MRW. It is a di-
agonal matrix with 1ffiffi

2
p in the row for confidence level 50, ones

located in rows for confidence levels 51 through 101, and zeros
otherwise. The probability of choosing right at time t1, denoted
PrðRjt1Þ, equals the squared length of the projection MR ·ψðt1Þ.
The probability of choosing left is 1−PrðRjt1Þ. If right motion is
chosen, the superposition state is projected onto the corre-
sponding evidence levels, and the probability amplitude is
updated to ψðt1jRÞ= MR ·ψðt1Þffiffiffiffiffiffiffiffiffiffiffiffi

PrðRjt1Þ
p . If left motion is chosen, MR is

replaced by ML; the two are identical except that the 1 and
0 entries along the main diagonal are flipped.
Subsequent processing starts from this new state so that in the

choice condition the probability of choosing confidence level y at
time t2 after choosing right then equals the squared length of the
projection My ·Uðt2Þ ·ψðt1jRÞ. In the no-choice condition, no pro-
jection is done at t1, and the probability of choosing confidence level
y at time t2 equals the squared length of the projection My ·ψðt2Þ.
The unitary matrix is constructed from a Hamiltonian matrix

H using the Schrödinger equation so that

UðtÞ= expð−itHγÞ. [8]

The attenuation parameter γ operates in the same way as in the
MRW. The entries hj,k of the Hamiltonian matrix are

hj,j = δ · j=m, [9a]

hj−1,j = hj+1,j = σ2. [9b]

This definition of the Hamiltonian matrix was chosen so that
the discrete state quantum process closely approximates the
continuous state Schrödinger process (9). The δ and σ2 parameters
of the QRW have a similar effect as their counterparts in the MRW
but function differently. The diffusion coefficient σ2 controls the
rate at which amplitude flows out of the states. The drift rate δ
determines the rate at which probability amplitude flows in. The
drift rate δ was set to be a multiplicative function of coherence

10648 | www.pnas.org/cgi/doi/10.1073/pnas.1500688112 Kvam et al.

www.pnas.org/cgi/doi/10.1073/pnas.1500688112


(Eq. 5). [Eq. 9 is a linear potential function in the diagonal of the
Hamiltonian (multiplying drift by the state index) so there is a
constant positive force pushing evidence toward the correct di-
rection. However, other potential functions (e.g., quadratic) should
be investigated in the future.]
The interference effect arises because the amplitudes in states

0–50 interact with those in 50–100 in the no-choice condition,
pushing each other outward toward more extreme evidence states.
This pressure is not present in the choice condition, leading to less
extreme evidence and hence confidence ratings. One consequence
of these less extreme confidence ratings is less overconfidence in the
choice condition.

Model Comparison. Each model has four free parameters: a pa-
rameter that sets the drift as a scalar function of motion direction
coherence (μ), a diffusion parameter (σ2), a second-stage attenua-
tion parameter that dampens of the rate of incoming information
after making a choice (γ), and a parameter that determines the
width of the initial state distribution (starting point variability) (w)
(SI Appendix, Table S3). Non-decision time parameters, accounting
for components of the response time exogenous to the evidence
accumulation process, had limited influence on model fits and
were dropped in order to facilitate model estimation.
The models were compared at the individual level: for each

participant and each model, four parameters were used to account
for 2,688 trials across 24 experimental conditions. Despite having
the same number of parameters, the QRW may be functionally
more complex, allowing it to produce good fits to the data without
necessarily bearing any relationship to the underlying process. To
account for this, we compared the Bayes factor between the two
models for each participant (22).
The Bayes factor was calculated using a fine-grid approxima-

tion across all possible combinations of the four parameters to
compute the likelihood function and uniform priors over their
values. The results are summarized in Table 1; the log Bayes
factor indicates the log odds of the QRW model over the MRW
given the data (see SI Appendix, Tables S4 and S5, for the
maximum likelihoods and parameter estimates).
The Bayes factor for seven out of nine participants and the group

level factor decisively favored the QRW (maximum likelihoods
yield the same conclusion). Participant 7 did not show second-stage
processing or an interference effect, so the MRWmay well describe
the behavior of this participant. Participant 3 was unable to distin-
guish between dot motion directions in many conditions, which

caused difficulty in fitting both models (SI Appendix, Fig. S4). Fu-
ture model development incorporating methods for mapping evi-
dence to confidence (e.g., using only 0/10/20% or 0/50/100%
ratings) could potentially improve fits, but this does not affect in-
terference so we favor simpler, more parsimonious models here.
Fig. 3 illustrates the fit of each model to the choice proportions for

each coherence condition and the distribution of confidence in the
choice and no-choice conditions for one participant and coherence
level [all participants across conditions are given in SI Appendix, Fig.
S4 (see also SI Appendix, Figs. S5 and S6)]. There are several reasons
that the QRW gives a better account of the data than the MRW.
First, the MRW predicts identical marginal distributions of confi-
dence ratings between choice and no-choice conditions, whereas the
quantum model picks up the slight rightward shift of these ratings in
the no-choice condition; this phenomenon is the interference effect
we described (see SI Appendix, Fig. S6; the QRW posterior pre-
dictions yield a group mean shift in confidence of +0.66%, compared
to +1.19% in the data). Second, the QRW was often better able to
simultaneously capture choices along with confidence ratings across
the various conditions, whereas the MRW often had to sacrifice or
compromise between the two. Notably, the MRW underestimated
choice proportions because higher diffusion more accurately cap-
tured confidence distributions but at the cost of predicting lower
choice accuracy. Finally, the observed confidence distributions are
frequently multimodal and discontinuous. The MRW again does not
account for these properties. By contrast, the QRW accounts for all
of these characteristics in a parsimonious way, operating only on its
first principles to earn a superior Bayes factor.
Although this MRW and similar versions have been used to

model a wide range of choice and judgment data, it may struggle
to account for this data simply because it cannot account for the
interference effect. To examine this possibility, we tested a sec-
ond model—the MRW-E—which assumes that additional evi-
dence may have been accumulated in the no-choice condition,
producing more extreme confidence ratings and thus an in-
terference effect. Despite the added ability to produce in-
terference, the QRW still outperformed the MRW-E. The Bayes
factor for seven out of nine participants and the group level factor
again decisively favored the QRW over the MRW-E. In comparison
with the MRW, the MRW-E provides a largely equivalent or often
poorer fit in terms of Bayes factors (SI Appendix, Table S6 and Fig.
S7). Part of the reason the MRW-E does poorly, in addition to the
characteristics it inherits from the MRW, is that it assumes more
evidence is accumulated in the no-choice condition producing a

Fig. 3. Data and model fits for participant 4 with coherence level 8%.
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change in the accuracy of the confidence ratings as well as the mean
shift in confidence. Recall, however, that there is no credible change
in the accuracy of the confidence ratings in the data.

Discussion
In this paper, we have developed a model of evidence accumulation
during judgment and decision-making based on quantum random
walk theory. The QRW represents a point of departure in modeling
evidence accumulation from the more typical classical probability
approach. In the classical case, evidence evolves over time, but
judgments and decisions are simply read out from an existing state
without changing the internal state of evidence. In the quantum
case, evidence also evolves over time, but judgments and decisions
are measurements that create a new definite state from an in-
definite (superposition) state. This quantum perspective recon-
ceptualizes how we model uncertainty and formalizes a long-held
hypothesis that judgments and decisions create rather than reveal
preferences and beliefs. The different approaches make competing
a priori predictions for the effect of sequences of responses, and
we have shown strong empirical support for the quantum predic-
tion that choices interfere with subsequent confidence judgments.
Moreover, we have shown for the first time to our knowledge that
the QRW is a viable competitor to the MRW in quantitatively
fitting choice and confidence distributions. Note that the QRW can
also account for response time distributions (8) and can out-
perform Markov models in this area as well (10).
A pertinent question is whether the MRW can be adapted to

account for the phenomena we observed. This is certainly possible
but may prove difficult: as we have shown, our results provide
several constraints on potential adaptations. The interference effect
itself is a strong constraint: many versions of the MRW that com-
monly give good accounts of choice and confidence data do not
predict any interference.
A second constraint is how the interference effect occurred. In

particular, confidence was less extreme following a choice. This poses
a problem for explanations like the confirmation bias, where people
focus on evidence that justifies their decision after making a choice,
meaning they should be more confident in the choice condition
(23, 24). Moreover, confidence accuracy also did not change. This
poses a problem for models like the MRW-E that assume different
amounts of processing between the choice and no-choice conditions.
A third constraint is that the interference effect only occurred

when there was second-stage processing. This result poses problems
for explanations based on differences in the mapping of evidence
onto confidence (25) and explanations assuming that the act of
making a choice introduces error into the cognitive system. Both

explanations would fail to explain why choice alone (without
second-stage processing) does not interfere with confidence.
Alternatively, on some trials during the choice condition, par-
ticipants reversed their initial choice (14) and could have
reported unexpectedly low confidence on these trials, producing
the interference effect. However, reversals during the choice
condition happened infrequently (6.1%), and confidence on
reversal trials was only slightly lower than on consistent trials.
We discuss this and other alternative models in more detail in
SI Appendix, section F.
Although an alternative MRW may be found to account for our

results, this does not diminish the QRW’s significance in high-
lighting and challenging important assumptions regarding the
judgment and decision-making process. In this paper, we have
shown that a common assumption of cognitive and neural theories
of decision-making—the read-out assumption—is violated even in a
simple perceptual task. An interference effect occurred when par-
ticipants were asked to make a decision about the leftward or
rightward motion of a stimulus. Specifically, their subsequent con-
fidence estimates were more conservative than when no earlier
decision was made, and they were consequently less overconfident.
This result, along with quantitatively superior model fits, lends
strong support to the modeling of choice and confidence as a
quantum random walk process, a model which describes decision-
making as a constructive process wherein a definite state is created
from an indefinite superposition. In addition to the cognitive im-
plications, a QRW model of evidence accumulation potentially
sidesteps the problem of how a group of neurons can produce
observed behavior that is consistent with a single evidence accu-
mulation trajectory (26). The QRW suggests that the mismatch
might lie in the cognitive representation of evidence accumulation:
instead of treating evidence accumulation as a single trajectory, it
may be more accurate to conceptualize it as a wavelike superposi-
tion state. In fact, populations of interacting neurons processing
evidence in parallel can give rise to a quantum random walk like the
one presented here (10), and similar population coding models
would certainly be capable of carrying out the necessary operations
(27). Hence, quantum random walk theory provides a previously
unexamined perspective on the nature of the evidence accumula-
tion process that underlies both cognitive and neural theories
of decision-making.
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Appendix A – Methods 

Participants. We recruited 9 undergraduate and graduate students (7 female, 2 male; 19-

27 years old) from a pool of people who had responded to flyers posted around the Michigan 

State University campus and East Lansing community. The flyers advertised for people who 
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wanted to participate in paid studies on judgment and decision making. An additional 2 

participants did not return after the first session, so they were excluded from further analyses. 

Participants were paid $8 per hour and could receive up to $5 more based on how many points 

they earned divided by the number of points it was possible to earn.  

 Random dot motion (RDM) stimulus. The motion display was similar to that used in 

previous neuropsychological studies [1,2,3]. The RDM stimulus consisted of a field of white 

moving dots on a black background, presented on a circular aperture of 10° diameter. There were 

three interleaved sets of dots such that each set was re-plotted three video frames later, On each 

iteration of the same set, some percentage of the dots were displaced by .25° to produce apparent 

motion at 5°/s velocity, while the remaining dots were plotted at random locations. The 

probability that a specific dot was displayed in motion is termed motion coherence. We used four 

levels of motion coherence: 2%, 4%, 8%, and 16%. The task was programmed using the 

Psychtoolbox extensions [4,5]. 

RDM practice (Session 1). The purpose of this task was to train participants to make 

timely responses immediately after hearing an auditory cue. During a given trial, a RDM 

stimulus appeared on screen and participants pressed either the left mouse button () or the right 

button () to indicate which direction they believed a majority of the dots were moving. First, 

they did 5 trials where they could make their decision response at any time. They also did 10 

trials of prompted decision training, in which they were instructed to enter their decision 

immediately after a 400 Hz beep that took place at either 0.5 or 1.0 s after stimulus onset. After 

each trial, participants were given feedback about their decision accuracy and timing (responses 

more than 500ms after the beep were met with a prompt to try to respond faster). 

Confidence scale practice (Session 1). Participants completed a series of trials to 
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become familiar with entering a confidence rating with the mouse. During a given trial a fixation 

display was shown for 500ms, then a percentage value (e.g., 9%) appeared just below the center 

of the screen. The semicircular confidence rating scale (see Fig. 2), used to control for the 

distance traveled to select a confidence rating with the mouse, also appeared onscreen above the 

percentage value. Participants moved the cursor with the mouse from the center of the screen to 

the appropriate point on the scale to match the value as quickly and accurately as possible. The 

value of the confidence rating was randomized and participants continued until they achieved at 

least 10 answers that were within 2 percentage points of the correct number. 

In addition, participants saw 15 trials of the random dot motion task with no mouse click 

element included – 5 trials in which they could simply enter a confidence rating when they saw 

fit, and 10 trials in which they were prompted with a beep to make a confidence response. This 

400 Hz beep occurred at 1.0 or 2.0 s following stimulus onset. 

 RDM direction discrimination task. The time course of a trial for the choice and no-

choice conditions is shown at the top and bottom (respectively) of Figure 2. Participants would 

start each trial of the task by clicking on a small fixation shape, which was either a circle (during 

choice trials) or a square (during no-choice trials). Once clicked (centering the mouse cursor), it 

would persist for 0.3 s before the RDM stimulus came on-screen and the mouse cursor was 

removed from the screen. In the choice condition, participants were cued via a low frequency 

beep (400 Hz) at 0.5 s from stimulus onset to choose which direction the majority of the dots 

were moving, left or right. Participants recorded their choice by pressing either the left or right 

mouse button. In the no-choice condition, participants were cued via a high frequency beep (800 

Hz) at 0.5 s from stimulus onset to click either the left or right mouse button. The mouse button 

was specified at the beginning of that block of trials (the left or right mouse button specification 
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alternated between blocks). A different frequency beep was used to minimize any confusion 

participants experienced between the two conditions.  

 After participants made their choice or clicked the button, a semi-circular confidence scale 

(from 0 to 100%, with major demarcations at 10 point intervals and minor demarcations at every 

1; see main text, Fig. 2) appeared over the upper half of the field of dots. The confidence scale 

was in terms of the confidence the dots were moving right, i.e., confidence of 0% indicated 

participants were certain the dots were moving left and a confidence of 100% indicated 

participants were certain the dots were moving right. Confidence judgments were cued at 0.05, 

0.75, or 1.5 s after the initial choice or click response was entered.  

Procedure. During the first session, participants first received a presentation describing 

the task that they were about to do. This included a description of all conditions and response 

modes. These directions were repeated on-screen during the training described above, which 

enabled them to practice making decisions and using the confidence scale. In addition, at the end 

of their first session, they saw a plot comparing dot coherence against their choice accuracy 

along with a Weibull fit line. We explained this plot to participants, noting that it should be an 

increasing function (it was for all participants in this experiment). 

At the beginning of each session, in addition to the training trials described in the sections 

above, participants would do 10 trials each of the choice and no-choice conditions.  These were 

organized into 4 blocks (2 choice, 2 no-choice) so participants could get accustomed to the task 

once again before we collected new data. 

The different conditions were organized into blocks of trials such that each block 

contained 2 iterations of each of the 4 levels of dot coherence (2 / 4 / 8 / 16%) crossed with each 

of the 3 levels of the duration of the second stage of processing (0.05 / 0.75 / 1.5 s) for a total of 



 5 

24 trials / block. Half of these blocks were choice blocks, where the pre-trial fixation was a red 

circle (see main text Fig. 2) with a 400 Hz beep to prompt a choice response after 500ms of 

stimulus presentation. The other half were no-choice blocks, where the pre-trial fixation was a 

red square and a 800Hz beep prompted them to click the right button on half of the no-choice 

blocks and the left button on the other half of the no-choice blocks (i.e. 2/4 blocks were choice, 

1/4 were click-right, 1/4 were click-left). They were informed prior to the start of each block as 

to which type it would be.  Mean response times after t1 for the choice condition were 0.548 

(Median = 0.370, SD = 0.625) s for the choice condition and 0.383 (Median = 0.298, SD = 

0.333) s for the no-choice condition.  After t2, confidence response times were 0.767 (Median = 

0. 863, SD = 0.392) s for the choice condition and 0.767 (Median = 0.871, SD = 0.391) s for the 

no-choice condition. 

After each trial, participants received feedback about whether their click was correct 

(whether their choice was correct on choice trials, or whether they clicked in the requested 

direction on the no-choice trials) as well as how many points they received for their confidence 

response. The amount of points participants received from their confidence rating was 

determined using a linear transformation of the Brier scoring rule [6]:  

Score = 100 * [c – (conf / 100)]
2
.  

The variable c indicates the correct answer (0 for left, 1 for right) and conf indicates their 

response on the absolute scale (0 for certain left, 100 for certain right).  The Brier scoring rule is 

a strictly proper scoring rule, meaning that the optimal strategy on the part of the participant is to 

provide a probability estimate that matches one’s true subjective probabilities.  

Appendix B – Regression Analyses 
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All regression analyses used hierarchical Bayesian linear models that included all 

possible interactions between predictors ([7], chapter 14). Vague priors were used for each 

parameter so as to let the data have maximal influence on the posterior estimates. We report the 

mean estimate of the slope parameter corresponding to a predictor (b) as well as the interval that 

contains the 95% most credible values for this parameter (Highest Density Interval / HDI). In 

practice, these highest density intervals tended to be fairly similar to the estimates one would 

obtain for a 95% confidence interval, but were slightly stricter (were closer to 0 than a 

corresponding classical confidence interval). 

Linear regression analyses all used MATLAB, JAGS, and matjags to fit the model. Each 

analysis was estimated using 8 parallel chains. Each chain was comprised of 1000 burn-in steps 

(unrecorded samples to allow the chain to reach the reasonable parameter space) and 10,000 

samples. Preliminary analyses confirmed that all chains converged. Each of the analyses reported 

in the paper are described individually below: 

Accuracy by coherence and second stage duration. Choice accuracy in the choice 

condition was predicted by coherence level, the duration of the second stage, and their 

interaction. A logit link function was used for this analysis. 

Confidence by coherence, second stage duration, choice/no-choice. In order to gauge 

how confidence changed over the different conditions, we transformed confidence responses so 

that they reflected how sure a participant was of the direction of dot motion, i.e. collapsed across 

directions in which they could respond. This resulted in confidence responses (y) ranging from 

50% (unsure of motion direction) to 100% (certain of motion direction) based on raw responses 
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(r) from the 0 (certain left) to 100 (certain right) scale.  The cumulative distributions of 

confidence for each individual on this scale is shown in Figure S1. 

100 ,    50

,             50

r r
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r r

 
 


 

Coherence, duration of second stage, and the choice / no-choice manipulation were used 

as predictors. Fig. S2 below plots how mean confidence changes over each of these 

manipulations.  Table S1 lists the mean group level coefficients and their HDI’s for each of the 

experimental factors: IJT duration, degree of motion coherence, and the choice/no choice 

manipulation.  

Confidence on full scale by coherence and duration of second stage. The interference 

effect relies on second stage processing in order to appear – there should be some change in 

confidence over time after t1 and the magnitude of this change should depend on the coherence 

of the stimuli, which implies an interaction between the duration of the second stage and dot 

motion coherence. During this second stage, we assume information about the state of the 

stimulus continues to be sampled and accumulated [8]. This suggests that additional information 

should lead to higher levels of confidence when accumulated evidence already favors the correct 

answer at t1.  However, when accumulated evidence reflects the incorrect answer at t1, new 

information should conflict with the existing information, on average decreasing a person’s 

confidence [8,9]. These conflicting forces reduce the effect of second stage processing time on 

confidence when it is coded on a half-scale, resulting in a null effect of second stage processing 

time x coherence as reported in Table S1. However, the effect of second stage processing can be 

much better seen if confidence ratings discriminate between correct and incorrect responses. To 
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do this, the confidence ratings were transformed from the raw scale (r) framed in terms of the 

state of the stimulus to a full scale (s), in terms of the true direction:  

 

That is, a raw scale rating of r = 40 when the dots were moving left would mean they 

were s = 60% certain in the correct direction; and a raw scale rating of r = 60 when the dots were 

moving to the right would also mean they were s = 60% certain in the correct direction. We 

submitted these transformed confidence ratings to a Bayesian hierarchical regression where the 

predictors were coherence, second stage processing time, and their interaction. We report the 

interaction in the main text and Table S2 shows the effect of each. 

Appendix C – Proofs 

 Recall that in the experiment, participants viewed a random dot motion stimulus and 

reported a confidence rating in the direction of the moving dots at time t2. On some trials, prior to 

the making a confidence rating, participants first chose which direction they thought the dots 

were moving at t1 = t2 - t. On other trials they made no choice and only clicked the mouse at t1. 

Below, we show that the MRW predicts no difference in the marginal distributions of confidence 

ratings between these two conditions, and that the QRW predicts that the two distributions will 

not be identical. Note this proof is an adaptation of the proof in [10] (see Ch.8, p. 248). 

 For simplicity, we assume a 1:1 mapping of evidence states onto confidence, but these 

proofs hold for any consistent mapping of evidence onto confidence as well as for models with 

decay and drift rate variability.  

100 ,

,

r if thedots weremoving left
s

r if thedots weremoving right
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 Mathematical proof of non-interference in MRW. The MRW predicts that the 

marginal distribution of confidence ratings in the two conditions (choice and no choice) should 

be equal, Pr(conf = y|t2, choice) = Pr(conf = y|t2,  no-choice). To see this, we define three m × m 

state to response probability transition matrices. The first, Mcorrect, is for choosing correctly and 

is filled with zeroes everywhere except for a series of ones along the main diagonal in rows 

corresponding to confidence levels 51-100 and a ½ at the row corresponding to confidence level 

50.  The second, Mincorrect, is for choosing incorrectly. It is filled with zeroes everywhere except 

for ones along the main diagonal in rows representing levels 0-49 and a ½ at the row 

corresponding to confidence level 50.  The third, My, is used to give the probability of a 

confidence rating y and is entirely zeroes except for a one in cell corresponding to confidence 

rating y. It is important to note, however, that the proof shown below does not depend on these 

specifications for Mcorrect and Mincorrect. The proof is valid for any Mcorrect and Mincorrect that have 

positive entries and satisfy the following completeness requirement Mcorrect + Mincorrect = I , where 

I is the identity matrix. Thus the proof holds for a much more general class of measurements at 

choice than the specific model that we fit to the data. Finally, let L be a 1 × m matrix filled with 

ones, which we use to sum the values across states. 

 In the choice condition, the probability of giving a particular confidence rating y at time t2 

after a choice (at t1) is simply the marginal sum across correct and incorrect answers, which we 

can show is equivalent to the probability of giving confidence rating y at t2 in the no-choice 

condition: 
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As we can see, the MRW must obey the law of total probability (in this context, this is 

called the Chapman – Kolmogorov equation) for every confidence level y, and therefore it 

predicts that the marginal distribution of confidence ratings between the choice and no-choice 

conditions should be identical. The same prediction holds when the transition matrix is non-

stationary, as can be seen by replacing P(t) with P(ti, tj). Note the prediction does assume the 

initial state (0) is the same for both conditions. It also assumes that the transition matrices do 

not change across conditions; however, the transition matrices could change across time and the 

same conclusion would follow. 

Mathematical proof of interference in QRW. To see the predicted violation of the law 

of total probability (i.e., the interference effect), we define three state-response amplitude 

transition matrices: Mcorrect, Mincorrect, and My. These matrices are equivalent everywhere to the 

corresponding state probability transition matrices for the MRW described earlier, with the 

exception that there is a 
1

2
   placed in the row corresponding to confidence level 50 for Mcorrect 

and Mincorrect. In the QRW, each of these matrices is a projection operator that collapses a vector 

onto the subspace spanned by the corresponding basis states. This means that when we take the 
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squared magnitude of each entry (element-wise), Mcorrect + Mincorrect = I (the combined correct 

and incorrect projection operators include all possible responses). 

According to the QRW, in the choice condition, the marginal distribution of confidence 

ratings at t2 following a choice at t1 are as follows: 
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2 2

1 1

1 1
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As the inequality (line 4) demonstrates, the QRW does not obey the law of total 

probability, instead allowing for and predicting an interference effect where the marginal 

distributions of confidence ratings can be different between the choice and no-choice conditions.  

This effect occurs because making a choice changes the state of the system, impacting 

subsequent processing.  However, it is important to note that for this violation to occur, the 

unitary operator U(t), corresponding to processing between t1 and t2, must be applied.  Otherwise 

both conditions would simple reduce to the squared magnitude for one and the same amplitude, 

that is
2

2 2Pr( | ) | ( ) |yconf y t t   . 

Appendix D –  Model Comparison  

Each model used 4 parameters in order to fit the data: coherence multiplier , diffusion , 

time-dependent attenuation , and initial distribution width w. In order to obtain drift for each 



 12 

coherence level, we multiply the drift coefficient by each coherence 2, 4, 8, 16%), giving 4 levels 

of drift for each drift parameter. Initially, we included parameters corresponding to non-decision 

and non-judgment time, but these were dropped because they drastically increased the 

computational demands of model fitting without substantially contributing to model 

performance.  

Note that in the Markov model we present in the paper, we set the decision bounds to -1 

and 101 and the step size Δ to 1, resulting in equations 4a-c and 5.  However, to draw it closer to 

the typical Markov approximation of a Wiener diffusion model, which uses bounds of -1 and 1, 

one could set Δ = 1/51 and begin the process at state 0.  For each time they occur in the model 

description, we would then set σ = σ·Δ (σ
2
 = σ

2
·Δ

2
) and µ = µ·Δ (δ = µ·c·Δ) (see [11]). 

In order to fit the models and compute a Bayes factor between them, we took a grid of 21 

drift, diffusion, and attenuation parameters and 51 initial distribution parameters and calculated 

the log of the multinomial function at each point in order to form a 21 x 21 x 21 x 51 grid 

approximation of the likelihood function: 
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ln[𝑃𝑟(𝐷 | 𝑀𝑜𝑑𝑒𝑙)]

=  ∑ ∑ (𝑛𝑐𝑜𝑟𝑟,𝑐,𝑖 ∙ ln[Pr(𝑐𝑜𝑟𝑟|𝑀𝑜𝑑𝑒𝑙, 𝑡1, 𝑐, 𝑖)] + 𝑛𝑖𝑛𝑐𝑜𝑟𝑟,𝑐,𝑖

3

𝑖=1

4

𝑐=1

∙ ln[Pr(𝑖𝑛𝑐𝑜𝑟𝑟|𝑀𝑜𝑑𝑒𝑙, 𝑡1, 𝑐, 𝑖)]

+ [∑ 𝑟𝑐ℎ𝑜𝑖𝑐𝑒,𝑐𝑜𝑟𝑟,𝑐,𝑖,𝑥 ∙ ln(Pr[𝑐𝑜𝑛𝑓 = 𝑥|𝑀𝑜𝑑𝑒𝑙, 𝑡2, 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑐𝑜𝑟𝑟, 𝑐, 𝑖])

100

𝑥=0

]

+ [∑ 𝑟𝑐ℎ𝑜𝑖𝑐𝑒,𝑖𝑛𝑐𝑜𝑟𝑟,𝑐,𝑖,𝑥 ∙ ln (Pr [𝑐𝑜𝑛𝑓 = 𝑥|𝑀𝑜𝑑𝑒𝑙, 𝑡2, 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑖𝑛𝑐𝑜𝑟𝑟, 𝑐, 𝑖])

100

𝑥=0

]

+ [∑ 𝑟𝑛𝑜− 𝑐ℎ𝑜𝑖𝑐𝑒𝑐,𝑖,𝑥 ∙ ln(Pr[𝑐𝑜𝑛𝑓 = 𝑥|𝑀𝑜𝑑𝑒𝑙, 𝑡2, 𝑛𝑜 − 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑐, 𝑖])

100

𝑥=0

]) 

 

 The entries ncorr,c,i and nincorr,c,i are the number of correct and incorrect choices, 

respectively, at t1 in the choice condition for coherence level c =1 to 4 and second-stage 

processing time level i = 1 to 3. Pr(corr | Model, t1, c,i) and Pr(incorr | Model, t1, c,i) are the 

choice probabilities for correct and incorrect choices for model M at t1 in coherence condition c 

and second-stage processing time level i (note that the predicted choice probabilities are the same 

for different levels of second-stage processing time, but we include these levels for 

completeness). The variables rchoice, corr,c,i,x, rchoice, incorr,c,i,x, and rno choice, c,i,x, correspond to the 

number of confidence ratings at each confidence level y for each condition. Pr(conf = y | Model, 

t2, choice, corr, c, i), Pr(conf = y | Model, t2, choice, incorr, c, i), Pr(conf = y | Model, t2, no-

choice, corr, c, i), are the predicted probabilities of responding with confidence level y in the 

respective condition.  
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The parameters and a brief description of their function are given in Table S3. For the 

priors, a uniform distribution over these values was used, so each grid point had equal weight in 

calculating the posterior likelihood. The ranges of possible values are also given in Table S3. 

Note that the models use different ranges of parameters, as the scale for the two is not quite 

comparable (see [10]). 

We used these log likelihoods and priors to calculate the log Bayes factor between the 

two models for each participant and for the overall group: 

Pr( | ) Pr( )
ln ( ) ln

Pr( | ) Pr( )

n nn

n nn

D QRW QRWQRW
BF

MRW D MRW MRW

  
       




 

 The indicator n is the n
th

 grid point for each model, Pr(D|Modeln) is the likelihood 

generated from the set of parameters at that grid point, and Pr(Modeln) is the prior probability of 

the model at that grid point. This term cancels out for the MRW / QRW comparison, as each 

model has uniform priors over the same number of grid points, but is important when 

considering the MRW-E because it uses more free parameters and the prior probability over each 

point is therefore lower.  Note that the likelihood grid allows us to compute the maximum 

likelihood estimates for each model as well.  These do not deviate much from the Bayes factors, 

indicating that the priors had little effect on the overall model comparison. 

Note that in evaluating the Markov and quantum models, we used the full scale coded in 

terms of the true direction. Thus, states 51-101 correspond to correct responses, states -1-49 

correspond to incorrect ones, and half of the time a 50 state was correct and the other half it was 

incorrect. 
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We present the resulting Bayes factors in in Table 1 in the main text, and the maximum 

log likelihoods and parameter values in Tables S4 and S5 respectively.  The confidence 

distributions generated from these maximum likelihoods, collapsed across coherence levels and 

second stage processing times, are shown in Figures S4 and S7, and the misfit between the 

models by coherence level (but collapsed across second stage processing times) are plotted in 

Figure S5.  These serve to illustrate the misfit in the MRW and QRW.  Noticeably, the MRW 

performs worst at high coherence levels and tends to under-estimate the probability of responses 

in the 0-20 and 80-98 confidence range, illustrating its inability to capture the multimodal 

confidence distributions.  In addition, it predicts more confidence responses at 100% than at 

nearby lower levels (80-99%).  This is largely because spreading out predicted distributions 

would entail higher values of diffusion, reducing choice proportions when they are already 

substantially underestimated (see Figures S4 and S7). 

Appendix E – Brief report of study without interference effect 

In a different study, we also compared a choice condition to a no-choice condition.  A 

total of 8 MSU students participated in 8 sessions (4680 trials) each, with training and blocking 

that was identical to the experiment reported above.  The second-stage processing time delays 

were the same (0.05 / 0.75 / 1.5 s), and the choice / click manipulation was done in the same 

way, but an additional level of coherence was included, giving coherence levels of 2 / 4 / 8 / 16 / 

32%.  However, in this study we did not give feedback and used a longer duration for t1. The 400 

Hz/800 Hz beep for the choice / no-choice conditions was played at 0.8 s. With these changes, 

we found no evidence of second stage processing of information as indicated by an interaction 

between coherence and second-stage processing time predicting confidence judgments (b = .05; 

95% HDI = [-.0.02, 0.12]). Other interactions with second-stage processing time similarly were 
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non-credible. There was also no effect of the choice/no-choice manipulation (i.e., interference 

effect) (b = 0.02; 95% HDI = [-0.01 0.05]).  The distributions of confidence judgments were 

statistically indistinguishable. For instance, the mean confidence judgment in the choice 

condition was (M = 84.91; SD = 15.29) while in the click conditions these values were (M = 

84.87; SD = 15.39). This pattern of results reveals that a choice at the first time point is not 

sufficient for the interference effect at the second time point. Rather, the interference effect 

requires both a choice and second stage processing (modeled with the application of the 

Schrödinger evolution operator in the quantum random walk model) for interference to appear 

(see earlier proof).  We discuss the implications of this experiment more in the main text. 

Appendix F – Alternative models 

Summary of alternative models addressed by our results. As we discuss in the text, it is 

certainly possible that a MRW may be found to account for our results. However, our results 

provide several constraints on potential adaptations. Below we list 17 different versions of the 

MRW and review how different aspects of our data rule them out.  

1. A basic MRW with drift, diffusion, and starting point variability parameters (nested 

within models 2 and 3) 

2. A MRW including time-dependent attenuation and reflecting boundaries (nested within 

model 3) 

3. A MRW which assumes additional processing before the click response is made in the 

no choice condition, along with time-dependent attenuation and reflecting boundaries.  

4. Confirmation bias (sampling information in favor of chosen alternative) 
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5. Alternative models with information loss or noise insertion when a choice response is 

made (including MRW) 

6. An MRW with an increased drift rate after choice 

7. An MRW with a decreased drift rate after choice 

8. An MRW with increased diffusion after choice 

9. An MRW with decreased diffusion after choice 

10. An MRW using category boundaries to bin confidence judgments (as in 2DSD [8]), 

including a version where criteria are shifted for choice vs no-choice to create an 

interference effect 

11. A model with competing accumulators for confidence judgments (as in Ratcliff and 

Starns’ RTCON [12,13]) where the accumulators change between choice and no-choice.  

12. Explanations suggesting that more information is sampled in the no-choice condition 

after an initial response is made 

13. An MRW with drift rate variability 

14. An MRW with absorbing confidence boundaries 

15. Explanations involving more information sampling in the choice condition, either before 

or after choice 

16. Other methods of confidence binning 

17. Lower confidence for incidences of choice-confidence conflict 

 

Models 1, 2, 13, and 14 – the canonical Markov random walk models – can be ruled out by the 

mere presence of an interference effect, as we show in the proof in Appendix C.   Models 4, 5, 6, 

8, and 15 can be ruled out by the direction of the interference effect (more extreme confidence in 
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the no-choice condition), which was the opposite of what we and other researchers had predicted 

in advance of our results.  Models 3-9, 12, and 16 predict different confidence accuracy 

(percentage of the time that confidence judgments fall on the correct side of the scale) between 

the choice and no-choice conditions, which was not the case (Choice = 76.36%, No-choice = 

76.25%, Difference = 0.11%, 95% HDI = [-0.04%, 0.20%]), as well as an interaction between 

coherence level and the size of the interference effect, which was also not the case (from Table 

S1: b = 0.04, 95% HDI = [-0.04, 0.12]).  Finally, models 1-5 and 10-16 fail to account for the 

finding that interference does not arise without second stage processing.  Models 10, 11, and 16 

additionally fail to account for interference without requiring additional assumptions, but they 

(or similar versions for the QRW) could perhaps be used to account for the individual variation 

in response mappings (e.g. using responses 0/50/100 [participant 5] versus 0/10/20/…/100. 

[participant 7] or the full scale [participant 2]). 

 Model 17 is somewhat more nuanced, suggesting that instances where participants gather 

sufficient evidence to reverse their decision (in the choice condition) should lead to lower 

confidence.  There are two issues with this proposal. First, reversals in the choice condition are 

rare, constituting only 6.1% of choice trials.  For reference, this means that relative to instances 

where evidence crossed sides of the confidence scale between t1 and t2 in the no-choice condition 

(which according to both models should be roughly as prevalent as the number of choice 

reversals), each reversal in the choice condition would have to be on average 16 points lower on 

the scale to create a 1% confidence difference between the conditions. This is extremely 

unlikely, especially given that mean confidence in cases of reversals was 82.5%, only slightly 

lower than the overall mean of 84.0% in the choice condition.  Second, as might be expected, the 

rate of counter-decisional confidence estimates more than doubles across coherence levels (2% 
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coherence = 8.0% reversals, 4% coherence = 5.6% reversals, 8% coherence = 7.4% reversals, 

and 16% coherence = 3.7% reversals).  This would mean that the interference effect size would 

interact with coherence, producing larger interference at lower coherence levels and a positive 

interaction between coherence and choice / no-choice, which was not found (see Table S1). 

 Markov random walk with extra processing in no-choice condition (MRW-E).  The 

MRW model we used in the model comparison in the main text is a standard MRW which has 

been used extensively in the dynamic decision-making literature.  However, it could be the case 

that its inferior fits are caused by its inability to create any interference effect between choice and 

no-choice conditions.  One suggestion that has been raised is that participants actually process 

more information in the no-choice condition, as making a choice results in more “time out” from 

processing than making a click response.  This corresponds to model 3 in the previous section.  

Note that this model actually predicts an interference effect in absence of second stage 

processing, a negative interaction between dot motion coherence and the choice / click 

manipulation on confidence, and higher confidence accuracy in the no-choice condition.  In 

some cases, reflecting boundaries may interfere with the interaction between coherence and 

interference – however, in these cases we would expect 2- or 3-way interactions between 

interference, coherence, and second stage processing, none of which were substantiated (see 

Table S1).  While none of these claims are supported by the data, we are unaware of any 

classical MRW that clears these empirical hurdles, so a model that can at least create an 

interference effect in the correct direction is a relatively good point of comparison. 

 In order to fit this model, we modified the MRW presented in the paper by including an 

additional free parameter ε, which adds an additional 0, 50, 100, 150, 200, 250, 300, or 350 ms 

of processing time to the no-choice condition.  A value of ε = 0 gives the (nested) original MRW 
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presented in the paper, and larger values of ε create a progressively larger interference effect.  

However, this additional parameter comes at the cost of increased flexibility, which is penalized 

in the Bayes factor. 

 The result of the comparison between the original MRW and this modified MRW, which 

we refer to as MRW-E model for the epsilon parameter, is presented in Table S6.  For 

participants 1, 4, 5, 7, 8, and 9, the best-fitting MRW-E model was actually the one with ε = 0, 

which corresponds to the nested MRW presented in detail in the main paper.  Therefore, the 

Bayes factor favored the original MRW for these participants, as the additional parameter did not 

improve fits.   

For the remaining participants, the best fitting ε value was 50 (50 ms of additional 

processing in the no-choice condition), with all other parameters similar to those of the original 

MRW.  It still failed to improve the fit over the original MRW for one of these participants 

(participant 3), and while it improved fits for the other two (participants 2 and 6), the change in 

fit was too small to affect the comparison between the MRW and the QRW (Table S6). 

Therefore, adding this additional parameter to the MRW in order to introduce interference does 

not substantially affect the results or interpretation of the model comparison presented in the 

main text.  

Given the relatively sparse differences between the MRW and MRW-E fits, it should 

perhaps not be surprising that the posterior fits are similar as well.  These are shown in Figure 

S7.  With only 50 ms of additional processing for half of the conditions for 3 participants, the 

predictions are essentially identical to the MRW predictions shown in Figure S4 – the rightward 

shift of no-choice conditions for participants 2, 3, and 6 is nearly imperceptible. 
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The inability of this model to account for the data comes down the same factors that hurt 

the MRW in the main paper – it could not account for the wavy or multimodal shape of the 

confidence distributions and it had to trade between fitting choice proportions and confidence 

distributions (e.g. it had higher diffusion values because this more accurately captured the 

distribution of confidence, even though it decreased choice proportions).  
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Figures 

 

Figure S1: Cumulative distributions of confidence ratings for participants 1-9 (A-J, 

respectively).  Note that participants 1-6 (A-F) showed interference effects, evidenced by the 

choice condition (gray line) being concentrated closer to 50, resulting in a high cumulative 

density across the lower confidence levels than the no-choice condition (dotted black line).  

Participants 7-9 (G-J) did not show significant interference effects, although they trended in the 

same direction (see Table 1). 
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Figure S2: Patterns of mean confidence over time by choice / no-choice, coherence, and IJT. 

Note the consistently higher confidence in the no-choice condition (interference effect). There is 

a tendency for confidence to decrease over time at lower coherence levels and increase over time 

at higher ones, indicating that participants are indeed continuing to process incoming 

information, though on this scale the highest density interval for the effect includes zero (see 

Table S1, but also S2 for the estimate on the correctness-based scale) 
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Figure S3: Outline of the dynamics of each model when a rightward moving stimulus is 

presented. Panels plot hypothetical probability distributions at different time points over different 

evidence levels, with levels 0–50 corresponding to states that favor the ‘left’ incorrect response 

and levels 50–100 corresponding to those that favor the ‘right’ correct response. Note that in this 

depiction we assume only 101 rather than 103 states.  Each model has an initial state – a mixed 

state vector in the Markov model, or a superposition state vector in the quantum model – which 

is centered over 50, indicating uncertainty (A, B). Each one uses a drift (δ) and diffusion (σ
2
) 
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parameter to describe the average rate of correct evidence and noise accumulated, respectively 

(C, D), but constructs the operator differently. At t1, if no choice is cued, then the dynamics 

continue to be applied. However, if at t1 a choice is cued, a decision is read out from the MRW, 

with ‘right’ being chosen if the evidence is above the decision criterion (E). In the QRW, the 

probability of choosing ‘left’ or ‘right’ is determined by the sum of the squared potentials over 

those states (F). Moreover, in the QRW, a choice requires that the state be projected onto the 

corresponding bases (e.g., 50–100 if ‘right’ is correctly chosen), eliminating the potentials over 

the states less than 50 and producing a change in the cognitive state. This projection, along with 

the dynamics applied from t1 to t2 (G, H), results in a different distribution of confidence for the 

choice and no-choice conditions in the QRW (K). However, because no change is made to the 

state at t1 due to choice in the MRW, this model predicts that the distributions will be the same 

for choice and no-choice conditions (J).  We present the formal mathematical construction of 

each model in the main text of the paper, and proofs are supplied in Appendix C. 
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Figure S4: Data along with maximum-likelihood predictions from the Markov and quantum 

random walk models.  Shown are the marginal probability density of confidence responses 

choice condition and the no-choice condition (top 2 panels for each participant) collapsed across 

second-stage processing and dot motion coherence manipulations.  Also shown are the observed 

and maximum likelihood predictions for choice proportions in each dot motion coherence 

condition (bottom panel of each participant).  Note that some participants tended to group their 

responses (e.g. participant #7 used 0/10/20/etc.) – further work incorporating individual 

differences in response mapping would certainly improve fits for both models, but response 

mapping does not directly affect interference (see proof in Appendix C). 
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Figure S5: Predicted minus observed proportions of confidence responses from MRW (red) and 

QRW (blue) models.  Within each plot, the zero line corresponds to a perfect fit – i.e., the model 

did not over- or under-estimate the actual proportion of confidence responses at that level.  

Values above this line indicate that a model over-estimated the proportion of responses at that 

confidence level, and values below it indicate underestimation.  A dot represents the prediction 

derived from the maximum likelihood parameters of a model for one participant and coherence 

level, averaged across second stage processing time.  The trend lines plot the mean pattern across 

all 9 participants, again averaged across second stage processing times.  Note that the QRW and 

MRW both perform reasonably well – with the majority of predictions deviating from observed 

proportions by less than 0.02 – and offer similar performance at low coherence levels.  However, 

the QRW offers overall closer fits to the data, particularly at high coherence levels, which along 

with choice proportion fits leads to the superior Bayes factor (note that we do not show the 

MRW-E, which is again essentially identical to the MRW shown here). 
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Figure S6: Cumulative distributions of confidence responses in the data (black) and maximum 

likelihood predictions from the QRW (blue) and MRW (red) for choice and no-choice 

conditions, averaged across participants, coherence levels, and second stage processing times.  

There are four things to note: 1) the difference between choice and no-choice conditions in the 

data (interference effect); 2) a similar effect in the QRW, showing its ability to predict 

interference; 3) the lack of difference between choice and no-choice in the MRW (no 

interference); and 4) the closer fit of the QRW to the data relative to the MRW.   

However, it is critical to note that the cumulative distribution provides a misleading depiction of 

the fit of the models, as the deviation between curves shows the accumulated error across many 

confidence levels.  The errors at individual confidence levels are comparatively quite small – a 

much more accurate impression of fit can be gathered from the probability mass distributions 

shown in Figures 3 and S4 as well as the deviations in probability mass shown in Figure S5.  
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Figure S7: Data and model fits for the QRW and the MRW-E model described in Appendix F.  

Note that there are nearly no differences when compared to the MRW fits shown in Figure S4 – 

the only changes are subtle rightward confidence shifts in the no-choice conditions for 

participants 2, 3, and 6. 
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Tables 

 

Factor Mean 95% HDI 

Second-stage processing 

time (SPT) -0.05 [-0.10  0.00] 

Coherence 0.50 [0.04  1.16] 

Choice / No-choice (C/N) -0.11 [-0.18  -0.04] 

SPT × C/N -0.02 [-0.08  0.04] 

Coherence × SPT 0.05 [-0.01  0.12] 

Coherence × C/N 0.04 [-0.04  0.12] 

Coherence × SPT × C/N 0.00 [-0.08  0.08] 

 

Table S1: Main effects and interactions of dot coherence, second-stage processing time (SPT), 

and the choice / no-choice manipulation (C/N) predicting confidence on the half scale (50-100). 

Note that the interaction between coherence and SPT is not significant on the half scale, as more 

evidence for the true state of the world (higher coherence) will increase confidence over time for 

correct estimates but decrease confidence over time for incorrect ones, and these conflicting 

patterns wash or cancel each other out 
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Factor Mean 95% HDI 

Second-stage processing 

time (SPT) 
0.04 [-0.02  0.10] 

Coherence 1.15 [0.81  1.49] 

Coherence × SPT 0.06 [0.01  0.12] 

 

Table S2: Main effects and interaction of coherence and second-stage processing time (SPT) on 

confidence, with confidence on a 0 (certain of incorrect direction) to 100 (certain of true 

direction) scale and transformed into log odds. The values of the interaction of coherence and 

SPT for each individual, which we use as a measure of post-decisional processing, are presented 

in Table 1. 
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Description 

Markov Random 

Walk Range 

Quantum 

Random Walk 

Range 

Coherence multiplier 

(μ) 

Drift rate is a scalar function 

of this parameter. The drift 

rate controls direction and 

rate of change in evidence 

stages 

[0.1, 3.0] [1.00, 40.00] 

Diffusion (σ
2
) 

Controls the spread of the 

accumulating evidence. 
[50.00, 250.00] [1.00, 100.00] 

Attenuation () 

Sets the relative rate of 

information processing 

during the second stage of 

evidence accumulation  

[0.1, 1] [0.1, 1] 

Initial distribution 

width (w) 
Width of initial state. [1, 51] [1, 51] 

 

Table S3: The parameters of the Markov random walk and the quantum random walk model and 

the range of possible values used to calculate the Bayes factor. Note that the coherence multiplier 

must be multiplied by the percentage of coherently moving dots (2, 4, 8, or 16) and – in the 

QRW – divided by the number of states we used (103) to get the normalized drift rate.  
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 Model 

Participant QRW MRW 

1 -14521 -14734 

2 -11692 -11725 

3 -14932 -14801 

4 -11586 -11777 

5 -10908 -11747 

6 -12358 -12581 

7 -12031 -11882 

8 -12034 -12373 

9 -14424 -14574 

 

Table S4: Maximum log likelihood for each model and participant resulting from the grid search 

used to compute the Bayes factor.  Note that the Bayes factor reflects closely the difference 

between log likelihoods – maximum likelihood estimates tended to be much better than next-best 

estimates simply due to the large number of data points, giving the priors little influence over the 

posterior odds. 
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Participant Model 
Coherence 

Multiplier (μ) 
Diffusion (σ²) Width (w) 

Attenuation 

(γ) 

1 

MRW 2.71 220 51 1 

QRW 24.4 55.45 1 0.235 

2 

MRW 2.57 230 34 0.415 

QRW 1.00 95.05 48 0.865 

3 

MRW 0.68 230 51 1 

QRW 1.00 1 51 1 

4 

MRW 3.00 130 39 0.685 

QRW 23.46 60.4 3 0.1 

5 

MRW 2.71 240 51 1 

QRW 24.45 55.45 1 0.19 

6 

MRW 2.86 250 39 0.595 

QRW 22.50 55.45 2 0.235 

7 

MRW 3.00 250 51 0.865 

QRW 28.30 60.4 2 0.1 

8 

MRW 2.86 230 28 0.505 

QRW 18.55 65.35 4 0.235 

9 

MRW 2.57 220 51 1 

QRW 28.30 60.4 2 0.1 

 

Table S5: Maximum likelihood parameter estimates for each participant and model, obtained 

from the grid search.  Note that in most cases, the maximum likelihood estimates were far 

superior to most other estimates, so we do not include posterior probability density intervals.  

Also, recall that the coherence multiplier must be multiplied by the percentage of coherently 

moving dots (2, 4, 8, or 16) and number of states in the QRW (103) to get the drift rate. 
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Participant Log Bayes Factor  

[MRW-E : MRW] 

Log Bayes Factor  

[MRW-E : QRW] 

1 -2 -214 

2 8 -33 

3 -0 131 

4 -2 -192 

5 -2 -839 

6 9 -214 

7 -2 146 

8 -2 -341 

9 -2 -152 

Group 4 -1708 

 

Table S6: Model comparison between MRW-E, which includes a parameter for additional 

processing in the no-choice condition leading to an interference effect, and the MRW as well as 

the QRW. Positive factors indicate support for the MRW-E. 


