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Evidence for different hypotheses is often treated as a singular construct, but it can be dissociated into
two parts: its strength, the proportion of pieces of information favoring one hypothesis; and its weight,
the total number of pieces of information available. However, cognitive and neural models of evidence
accumulation often make a proportional representation assumption, implying that people take these
two factors into account equally when making their decisions and judgments. We examine this
assumption by directly manipulating the number of samples and the proportion favoring either of two
alternatives in dynamic decision making and judgment tasks. The results suggest that people tend to
over-emphasize the strength of evidence relative to its weight in both an optional-stopping decision task
and a probability judgment task. In a drift-diffusion model, this is reflected by drift rates that are deter-
mined foremost by strength with a smaller influence of weight. This result challenges the proportional
representation assumption made by existing models of judgment and decision-making, and calls into
question modeling evidence accumulation as a Bayesian belief updating process.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Ordinarily, information or evidence is thought of as a singular
construct, one which informs our beliefs about and guides our
actions in choosing between hypotheses or alternatives. However,
evidence can often be dissociated into two components. These are
the extremeness or proportion of instances where it favors a
particular hypothesis — the strength of the evidence — and the total
amount or reliability of the data — the weight of the evidence.
Consider a simple example that Griffin and Tversky (1992) used
to illustrate the distinction:

Imagine that you are spinning a coin, and recording how often it
lands heads and tails. Unlike tossing, which (on average) yields
an equal number of heads and tails, spinning a coin leads to a
bias favoring one side or the other because of slight imperfec-
tions on the rim of the coin (an uneven distribution of mass).
Now imagine that you know that this bias is 3/5. It tends to land
on one side 3 out of 5 times. But, you do not know if this bias is
in favor of heads or in favor of tails.
The evidence collected via spinning the coin informs a person’s
belief that the bias is in favor of heads or tails. The weight in this
case is the number of spins (the sample size), and the strength of
the evidence is the proportion of times the coin came up heads.
Bayes’ rule implies both the weight and the strength of the
evidence should have equal importance in determining the confi-
dence of the bias in the coin.

Critically, Griffin and Tversky (1992) found that when partici-
pants judged the probability of a heads bias relative to tails, these
judgments were influenced more by changes in the strength than
changes in the the weight of available evidence. This greater influ-
ence of strength over weight not only included judgments about
chance (or aleatory) events, but also beliefs about epistemic events
(i.e., whether a fact was true or not) as well.

The standard explanation for why strength carries more influ-
ence on judgments than weight resides in a dual-process frame-
work (Kahneman, 2003; Sloman, 1996). That is, case-based
information, such as sample proportion, is intuitively and rapidly
assessed by a heuristic system (System 1), while accurate compu-
tation of likelihoods integrating class-based weight information
requires the action of a second, more deliberative system (System
2) (Brenner, Griffin, & Koehler, 2012). This theory suggests that the
gap arises, particularly at short time intervals, because System 1
has more time to operate and therefore processes more informa-
tion than does System 2, resulting in an emphasis on strength
relative to weight information in observed responses.
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However, it is important to note that this dual-system view of
the strength-weight gap is based mainly on static, high-level
cognitive tasks where information is readily available and can be
processed in any order. Two interesting variations, then, are simple
perceptual decisions and cases where information arrives or is
gathered dynamically. Finding a strength-weight gap in the per-
ceptual decisions would suggest that these two dimensions of
information are treated differently on a more fundamental level,
perhaps due to differences in sensitivity to each factor (see for
example Feigenson, Dehaene, & Spelke, 2004; Gallistel & Gelman,
2000; Longo & Lourenco, 2007). And evidence for a strength-
weight gap in experience-based decisions, given the differences
in risky choice behavior between experience- and description-
based decisions (Hertwig, Barron, Weber, & Erev, 2004; Hertwig
& Erev, 2009), would suggest that it is a robust phenomenon across
different methods of information presentation. The experiments
we outline below test each of these possibilities.

Curiously, most computational models of judgment and deci-
sion making tend not to make an explicit distinction between the
strength and weight of evidence and thus implicitly assume equal
emphasis on both dimensions. Sequential sampling models —
arguably the most successful at predicting decisions, response
times, and judgments — instead represent evidence as a tally or
sum of pieces of information extracted from the stimulus itself or
from some cognitive representation of the object or item in ques-
tion (e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Busemeyer & Townsend, 1993; Pleskac & Busemeyer, 2010;
Ratcliff, 1978; Ratcliff & McKoon, 2008; Smith & Van Zandt,
2000; Usher & McClelland, 2001). This assumption about the
nature of evidence is a result of the proportional representation
assumption that these models make. This assumption postulates
that the decision maker represents and updates evidence for
potential hypotheses in a way that (noisily) mirrors the actual
characteristics of the stimulus. In many cases, the rate of evidence
accumulation is even set directly from the features of the stimuli
(e.g., Busemeyer & Townsend, 1993; Krajbich, Lu, Camerer, &
Rangel, 2012; Link & Heath, 1975; Nosofsky & Palmeri, 1997;
Palmer, Huk, & Shadlen, 2005; Ratcliff, 2014).

The proportional representation assumption has its roots in the
sequential probability ratio test (SPRT) framework, on which these
models are based. According to the SPRT framework, the evidence
state at any give time approximates the log likelihood of the possi-
ble hypotheses given the accumulated information, usually to
within some scaling factor (Bogacz et al., 2006; Edwards, 1965;
Wald & Wolfowitz, 1949). The evidence state is then optimally
updated with each new piece of information according to Bayes
rule. Probability judgments can then be made accurately from this
representation, and decisions are made when the evidence exceed
a threshold magnitude (e.g. �5). The height of the threshold may
correspond to a desired level of confidence required to make a
decision.

Reliance on the SPRT framework and the proportional represen-
tation assumption extends to neural models as well (Kira, Yang, &
Shadlen, 2015). Recent neural models of decision making assume
evidence is represented in the brain in terms of (or approximates)
the relative log odds of the hypotheses (Beck et al., 2008; Gold &
Shadlen, 2001; Kiani & Shadlen, 2009; Meyniel, Sigman, &
Mainen, 2015) and that the odds are updated in a manner consis-
tent with Bayes rule (Kepecs, Uchida, Zariwala, & Mainen, 2008;
Knill & Pouget, 2004; Ma, Beck, Latham, & Pouget, 2006). While
neural representations of evidence almost certainly reflect a
person’s beliefs about the hypotheses, findings indicating unequal
credence given to strength and weight in judgments or decisions
would suggest that the evidence used to make these responses
cannot be updated in an optimal Bayesian way.
Most current theories suggest that both choices and confidence
judgments use the same underlying evidence representations
(Kiani & Shadlen, 2009; Merkle & Van Zandt, 2006; Moran,
Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 2010; Ratcliff
& Starns, 2013; Van den Berg et al., 2016; Vickers, 1979; Yu,
Pleskac, & Zeigenfuse, 2015). This means that an imbalance of
strength and weight contributions to evidence representations
should yield differences in both confidence judgments as well as
choice proportions and response times. We therefore test both
response types in our experiments. In the next section, we estab-
lish model predictions for both choice and judgment tasks by
examining theories of how strength and weight are combined to
generate the evidence underlying choice and confidence.

1.1. Definitions and proofs

Evidence in sequential sampling models is a function of both
the weight and strength. However, the precise function depends
on if the sequential sampling model uses a relative stopping rule
or if it uses an absolute stopping rule (Ratcliff & Smith, 2004). A
relative stopping rule implies that evidence from the stimulus in
favor of one response alternative is evidence against the other
alternative, with evidence accumulation halting to make a decision
when the balance between hypotheses reaches a threshold. Abso-
lute stopping rules, in comparison, imply that increasing evidence
for one alternative does not change the evidence for another alter-
native, and a decision is triggered when the evidence for a single
hypothesis reaches a threshold. In what follows, we show that in
sequential sampling models using relative stopping rules (i.e., ran-
dom walk and their continuous time variants, drift diffusion mod-
els) evidence is equally determined by strength and weight.
Appendix A shows that this same result is true for models with
absolute stopping rules.

In order to examine the predictions of sequential sampling
models as they relate to strength and weight, we first establish
operational definitions of each of these constructs. For our pur-
poses, we define the weight of incoming information to be the
number of samples that a person receives. We define strength as
a linear transformation of the proportion of samples that favor
one alternative. In this case, we define it relative to alternative A
(e.g. coin is 2/3 heads), so that positive values for strength indicate
that more samples favor A, and negative values of strength indicate
that more samples favor B. More formally, setting AðtÞ and BðtÞ as
the total number of observations at time t in favor of each alterna-
tive, we define weight and strength as follows:

Weight : wðtÞ ¼ AðtÞ þ BðtÞ

Strength : sðtÞ ¼ AðtÞ � BðtÞ
AðtÞ þ BðtÞ

ð1Þ

In a sequential sampling model using a relative stopping rule,
the evidence state PðtÞ is represented as the number of samples
favoring one option minus the number favoring the other,
PðtÞ ¼ AðtÞ � BðtÞ. Substituting our definitions from Eq. (1), this
position can also be represented in terms of strength and weight.

PðtÞ ¼ AðtÞ � BðtÞ ¼ wðtÞ � sðtÞ ð2Þ
One consequence of defining PðtÞ as the difference in number of

samples is that it can be understood as approximating the log like-
lihood of the samples given hypothesis A relative to hypothesis B.
According to Bayes’ rule, the true posterior log odds of hypothesis
A relative to B can be computed by combining the likelihood with
prior probabilities of the two hypotheses.

PrðAjDÞ
PrðBjDÞ ¼

PrðDjAÞ
PrðDjBÞ �

PrðAÞ
PrðBÞ ð3Þ
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Assuming both hypotheses are initially equally likely, PrðAÞ
PrðBÞ ¼ 1, we

can represent the log transformed posterior odds on the lefthand
side of Eq. (3) as a straightforward transformation of PðtÞ (see
Edwards, 1965; Wald & Wolfowitz, 1949):
ln
PrðAjDÞ
PrðBjDÞ
� �

¼ PðtÞ � lnðd0Þ ¼ sðtÞ �wðtÞ � lnðd0Þ ð4Þ
The term d0 is the discriminability of the alternatives as found in
signal detection theory (Green & Swets, 1966) – for example, if a
coin is either 70% heads [A] or 30% heads [B], d0 would be :7

:3). Thus,
probability judgments about the relative credibility of the two
hypotheses, insofar as they are scaled from the internal evidence
state PðtÞ, take strength and weight equally into account. This is
where the models appear to come into conflict with the data from
Griffin and Tversky (1992).

However, note that so far we can only predict confidence judg-
ments for a fixed set of data. To extend the model predictions to
dynamic choice and confidence data, we must specify two addi-
tional properties. First of these is the rate of accumulation of the
evidence for hypothesis A, known as the drift rate (l). This corre-
sponds to the rate of change of PðtÞ, which can be computed in
terms of strength and weight by taking the derivative of Eq. (2)
with respect to time.
P0ðtÞ ¼ w0ðtÞ � sðtÞ þwðtÞ � s0ðtÞ ð5Þ
We can compute the expected value of the drift more simply by
noting that strength does not change systematically with time
(i.e. E½s0ðtÞ� ¼ 0) as long as samples are generated from a consistent
source.
EðlÞ ¼ E½P0ðtÞ� ¼ E½w0ðtÞ � sðtÞ� ð6Þ
As Eq. (6) shows, in dynamic models of judgment and decision mak-
ing the drift rate or change in evidence per unit of time should
equally emphasize the strength of the evidence at each time point
and the rate of change in the weight of the evidence. The experi-
ments we describe next test this prediction for dynamic choices
and confidence judgments by directly modeling the effects of
manipulations of strength and weight on the drift rate in both
choice and confidence responses.

However, before we can model dynamic choices we need to
include a second extension, the decision threshold. The decision
threshold is used to determine when a choice is made and what
is chosen, such that a decision is triggered when the evidence
PðtÞ exceeds the decision threshold h. More specifically, a person
will choose alternative A once PðtÞ P h and choose alternative B
once PðtÞ 6 �h. The decision threshold h is important because it
allows one to separate evidence accumulation rates from the total
amount of evidence collected. Note separate bounds for alternative
A and B can be specified if we wish to introduce prior bias into the
accumulation process; however, this is unnecessary given our
experimental design.1
1 Note the generality of our definition of the weight wðtÞ and strength sðtÞ of
evidence implies the prediction of equal emphasis on strength and weight applies to a
wide range of sequential sampling models including those that (a) treat evidence as
some function of the likelihood of the information in respect to the different response
alternatives (e.g., Edwards, 1965; Laming, 1968; Van den Berg et al., 2016); (b) based
on a comparison between the sampled information and a mental standard (e.g., Link
& Heath, 1975); (c) evidence scaled proportionally from the observed stimulus
(Palmer et al., 2005; Ratcliff, 2014) or (d) a measure of strength based on a match
between a memory probe and memory traces stored in long-term memory (Ratcliff,
1978).
1.2. Predictions and studies

All of the models we have covered predict that drift rates in
both confidence and choice tasks should be coequally determined
by strength and weight. This includes basic random walk models
(Edwards, 1965; Laming, 1968; Link & Heath, 1975; Kira et al.,
2015; Stone, 1960), the drift-diffusion model and its extensions
(Busemeyer & Townsend, 1993; Pleskac & Busemeyer, 2010;
Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Starns, 2009),
neural models of evidence accumulation (Beck et al., 2008; Gold
& Shadlen, 2001; Kiani & Shadlen, 2009; Kira et al., 2015; Knill &
Pouget, 2004; Ma et al., 2006; Palmer et al., 2005) and even
accumulator-based models with absolute rather than relative stop-
ping rules (Smith & Van Zandt, 2000; Usher & McClelland, 2001)
(see Appendix A).

To test these predictions, we created a dynamic version of Griffin
and Tversky (1992)’s coin example. During the task, pink or green
dots appeared one-by-one on a computer screen. For a given trial,
the dots were drawn from a population of dots that either hadmore
greenormorepinkdots. Participants eitherhad to identify if thedots
were being drawn from the pool with more green or pink dots
(choice task), or rate their confidence (via a probability judgment)
that the dots were being drawn from a pool with more pink dots
(confidence task). In both the choice and confidence conditions, we
manipulated the strength and weight of this information by chang-
ing the relative frequencyand rate of arrival of the dots, respectively.
To equate confidence and choice tasks,we yoked the choice and con-
fidence conditions. In particular, the dot sequence and response
times from the choice tasks were used to determine the sample of
dots shown and the presentation time of the confidence condition.

We used the drift diffusion model as a measurement model,
examining the effect of strength and weight manipulations on esti-
mated drift rates in choice and confidence tasks (Ratcliff, 2014;
Voss, Rothermund, & Voss, 2004). In a perfect Bayesian belief
updating case, drift should always load entirely onto the interac-
tion of strength and weight. However, spurious linear components
may be introduced if errors are not homogeneous over the range of
strength and weight levels, so we allowed for separate linear com-
ponents of strength and weight. If the proportional representation
assumption holds, then the effects of manipulations of strength
and weight should be the same and any linear components should
be balanced between strength and weight, as they result from error
related to their joint function. Alternatively, it may be that even
during optional stopping and probability judgment tasks with
dynamic stimuli that, just as Griffin and Tversky (1992) found with
static fixed sample inferential tasks, participants over-emphasize
the strength of the evidence relative to its weight. As we reviewed
earlier, such a result would challenge existing dynamic decision
models that assume evidence accumulation is veridically a
Bayesian belief updating process.

2. Methods

2.1. Participants

A total of 29 Michigan State University undergraduate students
participated in the experiment for class credit. Participants were
69% female (31% male) and primarily 18–26 years old. Each partic-
ipant completed each of the 3 tasks – choice, confidence, and
numerical estimates – which combined took approximately 1 h
to complete.

2.2. Materials

The task was programmed in MATLAB using Psychtoolbox 3
(Brainard, 1997; Kleiner et al., 2007). Participants were seated
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individually in sound-dampening booths for the entirety of the
experiment following the initial briefing. All responses were
recorded using the mouse.

2.2.1. Stimuli
The stimuli were generated in MATLAB and Psychboolbox and

included pink or green circles, each occupying approximately 0.4
visual degrees, arranged within an aperture with a visual angle
of approximately 10 degrees on a black background. During the
task, dots appeared one by one on the screen at a rate depending
on the weight manipulation, which included rates of 3, 5, 7, 11,
or 15 dots per 2 s. The proportion of dots that were pink or green
were generated from 4 levels of strength which covered sample
proportions of 51%, 65%, 79%, and 93% (strength levels of 0.02,
0.30, 0.58, and 0.86, respectively). In the choice condition, dots
continued to accumulate until a participant made their response.
In all other conditions, the dots accumulated for a set period of
time before disappearing from the screen.

2.3. Choice task

In the choice task, participants saw the dot stimuli appear one
by one and accumulate on the screen (see Fig. 1, top row). Partic-
ipants were told that these dots were being pulled randomly from
a larger pool of dots that was either 2/3 green and 1/3 pink or 2/3
pink and 1/3 green (i.e., discriminability was held constant across
the experiment at d0 ¼ 2). Whenever participants were ready to
answer, they clicked the left or right mouse button to indicate
whether they believed the dots were coming from the 2/3 green
or the 2/3 pink pool, respectively. We recorded the precise number
and order of dots on each trial as well as the timing and accuracy
with which participants responded.

2.3.1. Analysis
The response time and accuracy data from the choice task were

analyzed using the drift-diffusion model as a measurement model
(Ratcliff, 2014; Voss et al., 2004). This model is frequently used to
describe the evidence accumulation process which is posited to
underlie both decision-making and judgments (Busemeyer &
Townsend, 1993; Pleskac & Busemeyer, 2010; Ratcliff, 1978;
Ratcliff & McKoon, 2008), and it has a number of advantages over
standard linear statistical models. Critically, it controls for impor-
tant characteristics of the evidence accumulation process such as
the time it takes to execute a response (non-decision time), the
within-trial variability in evidence, and the skewed distributions
of response times, all of which can interfere with fits based on sim-
ple linear predictions.

The diffusion model was implemented using a hierarchical
Bayesian implementation of the Wiener diffusion model provided
by Wabersich and Vandekerckhove (2014), using JAGS and the
matjags interface (see also Vandekerckhove, Tuerlinckx, & Lee,
2011). This model includes a drift rate parameter l, which corre-
sponds to the rate of change of evidence described in Eq. (6). Drift
was set as a linear function of strength, weight, and their interac-
tion. The coefficients on these factors (designated by ds) were set
hierarchically by participant. The estimates of these coefficients
allowed us to directly test the hypothesis that the rate of evidence
accumulation is equally determined by the strength and weight of
incoming evidence.

Alongside drift, the model also included a diffusion parameter
r2 that describes the variance in evidence, allowing us to examine
how the variability in accumulated evidence changes as a function
of strength and weight manipulations as well. The intercept of this
parameter was fixed in order to set the scale of the diffusion pro-
cess, but it was also permitted to vary as a function of strenght,
weight, and their interaction, with coefficients (designated by �)
again set hierarchically by participant. Note that this parameter
is often fixed to 1 across conditions, but this unnecessarily restricts
the model and can lead to variation being absorbed into other
parameter estimates, obscuring the true locus of variability
(Donkin, Brown, & Heathcote, 2009).

The choice model included two additional free parameters. This
included the threshold h, which was also set as a hierarchical linear
function of strength and weight with a fixed intercept. Finally, non-
decision time, a parameter representing the length of response
time during which participants were not accumulating evidence,
was set hierarchically by participant.

The JAGS model code is provided in Appendix B.
2.4. Confidence task

In the confidence task, participants saw the same dot stimuli as
in the choice task. Because we were interested in whether the type
of response (choice versus confidence) affected participants’ use of
the same evidence, the dots in the confidence task were exactly
matched to those that they saw in the choice task. This was done
by pulling the order of dots and response times directly from par-
ticipants’ prior responses on the choice task. For example, if partic-
ipants responded in 2.4 s after seeing ‘green, green, pink, green,’
[GGPG] in the choice task, they would again see this same pattern
of dots or its precise inverse [PPGP] over 2.4 s in the confidence
task. The order was randomly determined. This yoking procedure
enabled us to measure response times and confidence ratings for
the same stimuli and examine how they related to one another
as well as to the stimulus information.

After all dots had been presented, they were removed from the
screen and a confidence scale appeared (see Fig. 1, middle row).
Participants then rated the probability that the dots had come from
the 2/3 pink pool, from 0 (completely sure of 2/3 green) to 100
(completely sure of 2/3 pink), by clicking on the circular scale.
2.4.1. Analysis
To model confidence judgments, we assumed that the probabil-

ity judgment was a logistic (inverse logit) function of the accumu-
lated evidence at time t in the drift diffusion model. This is a
simplifying assumption that corresponds to current sequential
sampling models of confidence judgments Pleskac and
Busemeyer (2010). Because of this logit space assumption and
because responses were externally cued, the model used to predict
confidence estimates is simpler than that used for choice. Instead,
the only free parameters in this model are drift (l) and diffusion
(r2), which give the mean and variance of a normal distribution
of log odds judgments, respectively. As in the choice task, these
parameters were set as linear functions of strength, weight, and
their interaction, whose coefficients were in turn set hierarchically
by participant.

Unlike in the choice trials, however, the strength and weight
values were pulled from the actual stimuli. Because we were pre-
dicting log odds judgments from after the stimuli had been fully
presented, we had to use the total weight of information that par-
ticipants saw rather than the weight per unit time. Correspond-
ingly, the strength coefficient was also set based on the stimulus
characteristics rather than the seed value from the choice trial on
which it was based. This has the same effect as computing the drift
rate and noise and then multiplying them by the length of time for
which the stimulus was displayed, so the interpretation of these
parameter estimates is essentially the same as in the choice task.

The JAGS code and fitting details for this model are also
provided in Appendix B.



Fig. 1. Diagram of the choice (A), confidence (B), and number estimation (C) tasks that participants would perform.
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2.5. Numerical estimation task

To gauge how well participants gathered and stored the infor-
mation presented to them during the experiment, each participant
completed an estimation task between blocks of choice and confi-
dence trials. As in the other tasks, participants saw pink and green
dots accumulate one by one on the screen. After 2 s, all of the dots
were removed and participants were asked to estimate on a circu-
lar scale (see Fig. 1, top row) how many pink, green, or how many
total dots had appeared on the screen during that time. For each
trial, a random draw determined whether a participant was asked
to report the number of pink, green, or total dots.

2.6. Procedure

Participants were briefed initially on all 3 tasks that they would
see, including choice, confidence, and estimation tasks. Once
seated for the experiment, they were shown examples of 2/3 green
as well as 2/3 pink pools by watching 200 dots with the matching
frequencies appear on the screen. Following this, participants com-
pleted training on the choice task and then 8–10 blocks of 20 trials
of the choice task.2 After each block, they also completed 4 trials of
the estimation task. Once participants completed the choice section
of the study, they were trained on the confidence task and then com-
pleted 8–10 blocks of 20 confidence trials. Although the presenta-
tions times and sequence of dots in the confidence task were
yoked to the prior choice trials, the order of confidence trials was
randomized relative to the choice task. After each block of the con-
fidence task, participants again completed 4 trials of the estimation
task.

3. Results

For all parameter estimates reported in this section, we present
the mean estimate as well as the 95% highest density interval
[HDI], which spans the 95% most credible values based on the pos-
terior estimates of the parameter values. For the model predictions
2 Early study participants completed only 8 blocks, but this was taking an
insufficient amount of time to complete, so we increased the number of trials to 10
blocks of both choice and confidence trials for later participants.
for accuracy, response times, and confidence, we calculated the
predicted accuracy, mean response time, and mean confidence
for each sample of parameters of the MCMC chain. Figs. 2 and 3
plot the mean of these mean model predictions along with the
95% highest density interval of the mean predictions.

We used Bayesian estimation techniques to estimate the mod-
els for choice, confidence and numerical estimation (Kruschke,
2010; Lee & Wagenmakers, 2013). Unless otherwise specified, all
posterior parameter estimates are calculated using a likelihood
with a diffuse prior consistent with those used by previous authors
Kruschke (2010) and Wabersich and Vandekerckhove (2014) so as
to let the data have maximal influence on the posterior estimates.
Choice and confidence model parameters were estimated using 8
parallel chains. Each chain was comprised of 1000 burn-in steps
(unrecorded samples to allow the chain to reach the reasonable
parameter space) and 5000 samples. Preliminary analyses con-
firmed that all chains converged.

3.1. Choice task

Recall that the choice model used drift (l), diffusion (r2),
threshold (h), and non-decision time (ndt) parameters. Because
response alternatives were symmetric and because there was no
apparent tendency to favor one color or the other, we fixed the bias
in the model to 0.5 (unbiased). The posterior model fits are dis-
played in Fig. 2, which shows that the model provided a reasonable
fit to the accuracy and response time data.

The estimates of the coefficients in the model are shown in
Table 1. The coefficients for the drift rate are designated by d
(e.g., ds�w corresponds to the coefficient on the interaction between
strength and weight), while coefficients for noise are designated by
�. There are several things to note from these results: first, strength
(MðdsÞ ¼ 0:85, 95% HDI = ½0:77;0:92� has a much greater impact on
drift than weight does (MðdwÞ ¼ 0:48, 95% HDI = ½0:42;0:55�). On
average, manipulations of strength had approximately 1:8� the
effect of manipulations of weight (ratio Mðds : dwÞ ¼ 1:77, 95%
HDI = ½1:56;1:98�). This violates the predicted relationship given
in Eq. (6), suggesting that participants are indeed using strength
information more than weight when making their decisions.

Second, the coefficients for the threshold reveal that both
strength (MðfsÞ ¼ 0:62, 95% HDI = ½0:37;0:85�) and weight
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(MðfwÞ ¼ 0:11, 95% HDI = ½0:00;0:25�) are positive predictors of
threshold. These manipulations were not known to a participant
before stimulus onset; therefore, these indicate on-line threshold
changes, speaking against the static threshold assumption made
by most sequential sampling models.3

Finally, noise in this model increases minimally with strength
(Mð�sÞ ¼ 0:11, 95% HDI = ½0:02;0:20�) and the strength-weight
interaction (Mð�s�wÞ ¼ 0:08, 95% HDI = ½0:04;0:12�), but increases
quite substantially with weight (Mð�wÞ ¼ 0:23, 95% HDI =
½0:19;0:28�). This suggests that a higher number of evidence
samples results in greater variability in evidence representation.
This result is consistent with the finding that mental representa-
tions of larger numerical magnitudes have lower precision
(Feigenson et al., 2004; Gallistel & Gelman, 2000).
4 Note that the study reported here is not counterbalanced because we wanted to
match the choice and confidence conditions. However, in a previous study where the
confidence trial duration was fixed at 2 s long and counterbalanced with choice, we
found very similar results (with some differences reflecting the caveat that strength
and weight manipulations were range restricted relative to the yoked confidence
condition): the estimates for the confidence task suggested that drift had a credibly
3.2. Judgment task

Recall that the confidence model used a drift rate (l) and a
diffusion parameter (r2), which were set as a hierarchical linear
function of strength and weight manipulations. The model predic-
tions and data for the log odds of participants’ judgments across
strength and weight conditions are shown in Fig. 3. Also shown
are the true Bayesian posterior log odds of the hypotheses, shown
as the dotted black line. Note that participants’ estimates are gen-
erally under-confident, especially when strength was high and
weight was low (similar to the results of Griffin & Tversky,
1992). They also tend to be under-confident relative to their own
accuracy, which was close to 100% in most conditions.

The group-level mean estimates for the parameters in the
model are displayed in Table 2. As in the choice task, these esti-
mates indicated that drift was more heavily influenced by strength
(MðdsÞ = 0.37, 95% HDI = ½0:27;0:48�) than by weight (MðdwÞ = 0.12,
95% HDI = ½0:05;0:20�) or their interaction (Mðds�wÞ = 0.11, 95% HDI
3 It is worth noting that fixing the threshold parameter does not substantially
change the conclusions we draw based on estimates of other parameters in the mode
(i.e., they don’t just result from over-fitting). In such a model, strength (MðdsÞ ¼ 0:80
95% HDI = ½0:76;0:85�) still affects drift moreso than weight (MðdwÞ ¼ 0:49, 95% HDI =
½0:42;0:57�) and their interaction (MðdswÞ ¼ 0:35, 95% HDI = ½0:29;0:41�).

zero intercept (Mðd0Þ ¼ 0:00, 95% HDI = ½�0:28;0:28�) and increased with strength
(MðdsÞ ¼ 0:27, 95% HDI = ½0:22;0:32�) moreso than weight (MðdwÞ ¼ 0:09, 95% HDI =
½0:01;0:18�) or their interaction (Mðds�wÞ ¼ 0:16, 95% HDI = ½0:12;0:20�). Diffusion
increased with weight (Mð�wÞ ¼ 0:24, 95% HDI = ½0:11;0:35�) but credibly didn’
increase with strength (Mð�sÞ ¼ 0:07, 95% HDI = ½�0:11;0:26�) or their interaction
(Mð�s�wÞ ¼ �0:03, 95% HDI = ½�0:09; 0:02�).
l
,

= ½0:07;0:15�). On average, manipulations of strength had approxi-
mately 3� the effect on confidence relative to manipulations of
weight (Mðds : dwÞ = 3.28, 95% HDI = ½1:45;6:23�). Note the HDIs
of this proportion overlap substantially between the choice and
confidence conditions, indicating that the relative impacts of
strength and weight are credibly the same between tasks.

As in the choice task, diffusion changed substantially with
weight (Mð�wÞ = 0.54, 95% HDI = ½0:10;0:98�), and the strength-
weight interaction (Mð�s�wÞ = 0.78, 95% HDI = ½0:22;1:32�), but
not with strength alone (Mð�sÞ = 0.24, 95% HDI = ½�0:00;0:47�).
The increase in dispersion of log odds estimates with strength
and weight can be seen clearly in Fig. 3. Note that these effects
are likely to be somewhat inflated because motor errors between
ratings high on the scale result in much larger variance in log odds
than errors between ratings low on the scale. For example,
responding at 95–99 when one means to respond at 97, when
the probabilities are converted to log odds, yields much larger
deviations in log odds space compared to responding on 65–69
when one means to respond at 67. However, this does not funda-
mentally change the significance of the observation that higher
weight abnormally increases evidence variability.4
3.3. Numerical estimation task

In the estimation task, we examined how well people we able
to store and recall the number of pink, green, and total dots that
actually appeared on the screen. The precision of participants’
t
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Table 1
Group level mean estimates [95% highest density interval] of standardized linear
coefficients predicting diffusion model parameters from strength & weight.

Parameter Intercept Strength Weight Strength �
weight

Drift (l) 1.28
½1:20;1:37�

0.85
½0:77;0:92�

0.48
½0:42;0:55�

0.37
½0:31;0:42�

Threshold
(h)

3.35
½3:07;3:68�

0.62
½0:37;0:85�

0.11
½0:00;0:25�

0:05
½�0:05;0:15�

Noise (r2) Set to 1 0.11
½0:02;0:20�

0.23
½0:19;0:28�

0.08
½0:04;0:12�

Note. The drift is a function of d coefficients, threshold is a function of f coefficients,
and noise is a function of � coefficients.

Table 2
Group level mean estimates [95% highest density interval] of standardized linear
coefficients predicting confidence model parameters from strength and weight levels.

Parameter Intercept Strength Weight Strength �
weight

Drift (l) 0.03
½�0:17;0:23�

0.37
½0:27;0:48�

0.12
½0:05;0:20�

0.11
½0:07;0:15�

Noise (r2) Set to 1 0.24
½�0:00;0:47�

0.49
½0:09;0:88�

0.53
½0:32;0:76�

Note. Drift is a function of d coefficients and noise is a function of � coefficients.
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estimates varied based on the quantity they were asked to esti-
mate – Fig. 4 shows participants’ mean estimates of the number
of dots (with 95% HDIs) based on the actual number of corre-
sponding dots.

We also fit a hierarchical Bayesian linear model predicting the
intercept, slope, and standard deviation of the dot number
estimates based on the actual number shown. The (non-
standardized) mean group-level estimates are credibly unbiased
(mean intercept b0 = 0.49, 95% HDI = ½�0:06;1:06�; mean slope b1

= 1.01, 95% HDI = ½0:91;1:12�) and even trended slightly high, so
underestimation of the number of dots is not a plausible explana-
tion for under-emphasis of weight. Instead, it seems that partici-
pants are able to store the information presented to them with
reasonable accuracy, making it unlikely that failures to use
strength and weight information optimally are due to perceptual
errors.

The effect of the true number of dots on the variance of number
estimates, however, suggests that the distribution of these esti-
mates was wider with the number of dots shown (br = 0.50, 95%
HDI = ½0:04;0:99�). Consistent with the noise parameter estimates
in choice and confidence tasks as well as the results from previous
numeracy studies, this change in the variability of responses indi-
cates that our participants’ precision decreased as they estimated
larger numerical magnitudes.
4. Discussion

The most apparent result of our studies is that participants’
decisions and judgments were affected more by changes in
strength than weight of information. This was reflected in the
effect of experimental manipulations of these two factors on the
estimated drift rates – across tasks, the best estimates indicate that
manipulations of strength have at least 1:5� the effect on drift rate
relative to manipulations of weight. These findings violate the pro-
portional representation assumption made by sequential sampling
models of the evidence accumulation process.

As such, we replicated the main findings of Griffin and Tversky
(1992) in a perceptual task and extended it to cover dynamic judg-
ments as well as decisions. This comes with the additional caveat
that the greater effect of strength led to under-confidence in
high-weight, low-strength conditions. While we did not find direct
evidence for overconfidence in low-weight, high-strength condi-
tions as Griffin and Tversky did, the slope of the estimates and data
in Fig. 3 suggests that this would be the case if we were to force
lower-weight trials. Overconfidence would also likely arise if we
manipulated other sources of class-based information. For exam-
ple, people’s insensitivity to the base rate of green-dominant or
pink-dominant dots (base rate neglect; Bar-Hillel, 1980; Griffin &
Tversky, 1992; Kahneman & Tversky, 1973) could produce over-
confidence based on samples’ representativeness. Similarly,
manipulating the discriminability of the two hypotheses [d0] by
adjusting the proportions of each color to e.g. 3

4 or 8
15 could poten-

tially bump participants’ judgments and decisions around relative
to representations based on the true log odds (Wallsten, 1996).
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On top of replicating previous findings in a perceptual task,
extending them to dynamic decisions, and relating our results to
models of the decision-making process, we also investigated the
source of these effects. Past explanations of judgments being more
affected by strength than weight have been in terms of a dual-
process framework (Brenner et al., 2012). According to this frame-
work, the effect of strength is due to the dominance of a heuristic
decision system that primarily examines case-based information
regarding sample proportion (System 1). The smaller impact of
weight would then be attributable to a second information
processing system that focuses more on class-based information
(System 2). This second system would allow for better adjustment
of log odds judgments relative to the true posterior probabilities,
but be invoked only later during trials – therefore, it could explain
why judgments in low-strength and low-weight trials (which
tended to result in longer presentation times because it took
participants longer to gather sufficient information) tended to be
closer to the true probabilities. However, there are two slight
curiosities here: first, we showed via the number estimation task
that participants could accurately though not precisely assess the
number of dots presented to them. This would suggest that they
paid attention to weight information but just didn’t use it to make
their judgments, a phenomenon which is odd to attribute to a
System 1 information processing pattern. Second, the task here
was a dynamic perceptual task, as opposed to the higher-level
cognitive tasks that dual-process theories typically explain. To
account for these data with a dual process explanation, one would
have to claim that both systems exist on a fundamental perceptual
level. Each of these is possible, but one could envision a simpler
single-process explanation that accounts for choice, confidence
and response time quantitatively.

Alternatively, the differential effects of the strength versus
weight of evidence on perceptual judgment and choice may have
a more fundamental source (for analogous results with other
phenomena see Pleskac & Busemeyer, 2010; Trueblood, Brown,
Heathcote, & Busemeyer, 2013; Zeigenfuse, Pleskac, & Liu, 2014).
Our results suggest this may reside in participants’ ability to trans-
late the raw strength and weight information they experienced
into appropriate evidence representations. The results of our
choice, judgment, and numerical estimation tasks all suggest that
the precision of participants’ estimates of larger magnitudes
(in terms of weight) decreased. This result is consistent with
findings that people are less able to discriminate via absolute
differences between large numbers relative to small numbers
(Feigenson et al., 2004; Longo & Lourenco, 2007). This results in a
concave sensitivity function for number representations reflecting
Weber’s law. If evidence representations rely on this sensitivity
function, this would explain why higher weight results in progres-
sively greater underconfidence (see Fig. 3). However, the ultimate
source of this insensitivity remains an open question – it may be
an adaptation to the low prevalence of high-weight information
or perhaps to the greater accessibility of strength information.

In any case, it seems that the accumulation of evidence for
making judgments and decisions is not a true Bayesian updating
process, nor does it proportionally represent strength and weight.
However, the weaker assumption that evidence is monotonically
related to strength and weight does seem to hold. The drift rate
seems to correspond to some combination of strength and weight
information, just not the ‘‘correct” combination. Our hierarchical
linear model predicting drift from these manipulations provided
a more than reasonable account of accuracy, response time, and
confidence judgments (see Figs. 2 and 3), suggesting that there is
at least one function mapping strength and weight onto evidence
that can produce our results with high fidelity.

Another curious result is the finding that strength and weight
manipulations in the choice task seemed to affect the thresholds
that participants set for their decisions. However, strength and
weight were not known to participants before the start of a trial.
This means that thresholds must be changing somehow while par-
ticipants are accumulating evidence. Our results suggest that
thresholds increase with higher strength and weight, which could
be construed in two ways. One construal would be that partici-
pants are willing to set higher thresholds when they know they
will be met. In this case, participants would simply adopt stricter
criteria when they knew they were receiving high quality/quantity
information. An alternative construal is that participants in low
strength and weight conditions lowered their thresholds. Since
the accumulation process would be slower in these conditions, it
could be the case that thresholds are collapsing over time such that
low strength and low weight conditions hit the decision bounds
when they have already partially collapsed. Therefore, this result
could likely be explained by a choice process with collapsing
bounds, as other authors have suggested (Bowman, Kording, &
Gottfried, 2012; Drugowitsch, Moreno-Bote, Churchland, Shadlen,
& Pouget, 2012; Ratcliff & Frank, 2012).

4.1. Concluding remarks

In this paper,we examinedhowpeople update their beliefs based
on the strength (sample proportion) and weight (sample size) of
incoming information. In particular, we expanded on previouswork
by examining the effect of manipulations of these factors on both
choices and judgments regarding dynamic perceptual stimuli. Our
results suggested that strength contributed much more to
evidence representations underlying both decisions and judgments.
This indicates a violation of the optimal Bayesian updating mecha-
nism which is thought to underlie evidence accumulation as well
as the weaker proportional representation that suggests that these
representations noisily mirror the characteristics of the stimulus.

It seems that drift-diffusion and similar evidence accumulation
models can still offer a good account of behavioral data, but they
must be modified to move away from the Bayesian updating, pro-
portional representation, and static threshold assumptions that
have been inherited from early models of this process. We have
taken some steps in this paper by providing models which set drift
and threshold based on strength and weight manipulations, but
further efforts on identifying the source of the strength-weight
gap will help us better construct models of how stimulus informa-
tion maps onto evidence representations used to make judgments
and decisions.
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Appendix A. Models with absolute stopping rules

When we considered relative stopping rules we defined
strength as a linear transformation of the proportion of samples
which favored option A at time t:

sðtÞ ¼ AðtÞ � BðtÞ
AðtÞ þ BðtÞ ¼ 2 � AðtÞ

AðtÞ þ BðtÞ � 1 ð7Þ

However, for absolute stopping rules it is more useful to use the
original sample proportion spðtÞ.

spðtÞ ¼ AðtÞ
AðtÞ þ BðtÞ ¼

sðtÞ þ 1
2

ð8Þ

If a sequential sampling model were to use an absolute stopping
rule, where an answer is given as soon as either A or B gains
enough samples, then there are 2 accumulators to consider. Each
of their positions is given as

AðtÞ ¼ ðAðtÞ þ BðtÞÞ �
ð2 � AðtÞ

AðtÞþBðtÞ � 1Þ þ 1

2
¼ wðtÞ � spðtÞ

BðtÞ ¼ ðAðtÞ þ BðtÞÞ � 1�
ð2 � AðtÞ

AðtÞþBðtÞ � 1Þ þ 1

2

 !

¼ wðtÞ � ð1� spðtÞÞ

ð9Þ

In essence, the accumulator for A is the weight times the origi-
nal sample proportion instantiation of strength (with its linear
transformation undone), and the accumulator for B is the weight
times (1� sample proportion). The drift rates for these accumula-
tors can be found by taking the derivative, which will result in
the rate of change of weight times the strength as in Eq. (6). The
important thing to note is that each accumulator is still an even
function of strength and weight — neither one emphasizes one
over the other. Therefore, essentially all of the predictions we
discuss regarding relative stopping rule models will also hold for
absolute stopping rule models.
Appendix B. Model details, data, and code

The model code, raw data, and MATLAB scripts for analyses are
available on the Open Science Framework at https://osf.io/ba5c7/.

For all models presented, vague priors consistent with those
used by Wabersich and Vandekerckhove (2014) were used for each
parameter so as to let the data have maximal influence on the pos-
terior estimates. Choice and confidence model parameters were
estimated using 8 parallel chains. Each chain was comprised of
1000 burn-in steps (unrecorded samples to allow the chain to
reach the reasonable parameter space) and 5000 samples. Prelim-
inary analyses confirmed that all chains converged.

B.1. Choice model

The JAGS code for the diffusion model we used is given below.
The inputs to the model are nData (the number of data points),
nSubjects (the number of participants), strength (standardized
value of strength for each trial), weight (standardized value of
weight for each trial), subject (number indicating which partici-
pant the data point corresponds to), and y (response times, with
incorrect responses coded as negative response times). It requires
the dweiner package from Wabersich and Vandekerckhove
(2014) in order to run.
model {
for( i in 1:nData ) {
y[i] � idwiener(thresh[i], tau[subject[i]], .5,

drift[i])

drift[i] <- (d0[subject[i]] + d1[subject[i]]⁄
strength[i] + d2[subject[i]]⁄weight[i] + d12

[subject[i]]⁄strength[i]⁄weight[i])/noise[i]
thresh[i] <- (a0[subject[i]] + a1[subject[i]]⁄

strength[i] + a2[subject[i]]⁄weight[i] + a12

[subject[i]]⁄strength[i]⁄weight[i])/noise[i]
noise[i] <- exp(lognoise[i])

lognoise[i] <- n1[subject[i]]⁄strength[i] + n2

[subject[i]]⁄weight[i] + n12[subject[i]]⁄
strength[i]⁄weight[i]

}
# Priors

Mt � dnorm(0, .0001)

Pt � dgamma(.001, .001)

for( s in 1:nSubjects ) {
tau[s] � dnorm(Mt, Pt)

d0[s] � dnorm(Md0,Pd0)

d1[s] � dnorm(Md1,Pd1)

d2[s] � dnorm(Md2,Pd2)

d12[s] � dnorm(Md12,Pd12)

a0[s] � dnorm(Ma0,Pa0)

a1[s] � dnorm(Ma1,Pa1)

a2[s] � dnorm(Ma2,Pa2)

a12[s] � dnorm(Ma12,Pa12)

n1[s] � dnorm(Mn1,Pn1)

n2[s] � dnorm(Mn2,Pn2)

n12[s] � dnorm(Mn12,Pn12)

}

Md0 � dnorm(0, .0001)

Md1 � dnorm(0, .0001)

Md2 � dnorm(0, .0001)

Md12 � dnorm(0, .0001)

Ma0 � dnorm(0, .0001)

Ma1 � dnorm(0, .0001)

Ma2 � dnorm(0, .0001)

Ma12 � dnorm(0, .0001)

Mn1 � dnorm(0, .0001)

Mn2 � dnorm(0, .0001)

Mn12 � dnorm(0, .0001)

Pd0 � dgamma(.001, .001)

Pd1 � dgamma(.001, .001)

Pd2 � dgamma(.001, .001)

Pd12 � dgamma(.001, .001)

Pa0 � dgamma(.001, .001)

Pa1 � dgamma(.001, .001)

Pa2 � dgamma(.001, .001)

Pa12 � dgamma(.001, .001)

Pn1 � dgamma(.001, .001)

Pn2 � dgamma(.001, .001)

Pn12 � dgamma(.001, .001)

}

http://https://osf.io/ba5c7/
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B.2. Confidence model code
P.D. Kvam, T.J. Pleskac / Co
Confidence judgments of 0% and 100% were transformed to 0.1%
and 99.9% before being turned into log odds (to avoid divisions by
zero). The JAGS code for this model is presented below. Note that
the confidence model uses a t distribution to describe the log odds
— this is done to provide the heavy-tailed shape of the data due
arising from the large number of estimates near 0% and 100%.

As in the choice model, inputs to the model are nData (the num-
ber of data points), nSubjects (the number of participants), strength
(standardized value of observed strength for each trial), weight
(standardized value of observed weight for each trial), subject
(number indicating which participant the data point corresponds
to), and y (log odds judgments).

model {
for( i in 1: nData) {

y[i] � dt(drift[i],tau[i],4)

drift[i] <- d0[subject[i]] + d1[subject[i]]⁄
strength[i] + d2[subject[i]]⁄weight[i] + d12

[subject[i]]⁄strength[i]⁄weight[i]
tau[i] <- 1/pow(exp(logsig[i]), 2 )

logsig[i] <- s0 + s1[subject[i]]⁄strength[i] +

s2[subject[i]]⁄weight[i] + s12[subject[i]]⁄
strength[i]⁄weight[i]

}
# Priors

for( n in 1:nSubjects ) {
d0[n] � dnorm(Md0, Pd0)

d1[n] � dnorm(Md1, Pd1)

d2[n] � dnorm(Md2, Pd2)

d12[n] � dnorm(Md12, Pd12)

s1[n] � dnorm(Ms1,Ps1)

s2[n] � dnorm(Ms2,Ps2)

s12[n] � dnorm(Ms12,Ps12)

}

s0 � dgamma(.001, .001)

# Priors

Md0 � dnorm(0, .0001)

Md1 � dnorm(0, .0001)

Md2 � dnorm(0, .0001)

Md12 � dnorm(0, .0001)

Ms1 � dnorm(0, .0001)

Ms2 � dnorm(0, .0001)

Ms12 � dnorm(0, .0001)

Pd0 � dgamma(.001, .001)

Pd1 � dgamma(.001, .001)

Pd2 � dgamma(.001, .001)

Pd12 � dgamma(.001, .001)

Ps1 � dgamma(.001, .001)

Ps2 � dgamma(.001, .001)

Ps12 � dgamma(.001, .001)

}
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