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Cues indicating the state of the world play a critical role in decision-making in both inferential
and preferential tasks, and are the focus of many heuristic models of cognitive processes. In
this paper, we present the formal logical structure that is presupposed in a specific class of
these processes: fast and frugal heuristics. We review the structure of these heuristics and
show that they make a number of implicit assumptions resulting from the formal classical
logic that underpins their structure. These assumptions lead to a number of predictions that
are inconsistent with existing empirical data, but they follow primarily from the classical logic
structure of heuristics and not from the rule-based cue processing approach itself. We introduce
an alternative logic based on quantum theory that proposes a different and potentially more
accurate set of underlying assumptions, and show that this framework addresses many of the
issues arising from classical logic. We then demonstrate how heuristics can be reconstructed
by integrating them with a quantum logic structure, examine the benefits that heuristics and
quantum logic provide to one another, and outline the new questions and predictions that their
integration yields. We contend that the integration of heuristics with quantum logic enhances
both frameworks, improving heuristics as descriptive models by bringing them closer to the
empirical data and grounding quantum logic in a psychological theory by giving it concrete
processing rules to implement.
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Introduction

The use of cues – indicators of the state of the world
present in our environment – is an integral component of in-
ferential and preferential decision making. Cues are often
external indicators such as linguistic cues that differentiate
words (Reed, 1989), visual cues that indicate distance (Ja-
cobs, 1999), or nonverbal signals of deceptive behavior (De-
Paulo et al., 2003), but it is also possible to use internal states
such as fatigue, activated schemas, or working memory con-
tent (e.g., Koriat, 1997). The question that every decision-
maker must address is which cues to use in which situations.
One solution to this problem is to establish rules for informa-
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tion processing that specify general rules of cue organization
that can be applied across multiple contexts. In the first sec-
tion of this paper, we review some of the rules that people
appear to use for common decisions. For simplicity, we fo-
cus on fast and frugal heuristics. These strategies use finite
sets of cues to make primarily binary decisions (Gigerenzer
et al., 2011, 1999; Hertwig et al., 2013; Todd et al., 2012).
To do so, they propose a particular set and order of cue use,
establishing a computationally tractable basis for informa-
tion processing in decision tasks. In this paper, our examples
center primarily around the recognition heuristic (Goldstein
& Gigerenzer, 2002), in part because it has been well-studied
and has proven to be empirically supported in a number of
situations (see Pachur et al., 2011; Marewski et al., 2010,
for reviews) but also because it has a straightforward logical
structure that is simple enough to deconstruct. We also show
how classical and quantum information processing architec-
tures can be used to model many non-compensatory heuris-
tics like take-the-best (Gigerenzer & Goldstein, 1996), and
we present a brief outlook on how to construct other types
of heuristics that involve summing and weighting or parallel
cue processing as well.
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An important insight that we gained from this work and
we hope to convey here is that when establishing rules for
information processing, one commits to a particular theory
of information and information processing. In the case of
heuristics, the information processing theory that has been
adopted is a classical one, applying logic operators to deter-
ministic bits of information. This is indicated by their abil-
ity to be diagrammed in information processing steps (i.e.,
box and arrow diagrams) (Gigerenzer & Goldstein, 1996;
Gigerenzer et al., 1999), fast-and-frugal trees (Martignon et
al., 2003, 2008; Luan et al., 2011), and implemented by de-
terministic rule systems like ACT-R (Schooler & Hertwig,
2005; Marewski & Schooler, 2011). Adopting a theory of in-
formation and information processing has consequences for
a model’s ability to describe human decision making. In the
second section of the paper, we examine the basic princi-
ples of classical information theory and their implications for
heuristics and other descriptive models of cognition.

Following our examination of classical logic heuristics,
we introduce an alternative framework for constructing cue
processing models based on quantum logic (Busemeyer &
Bruza, 2012; Yanofsky et al., 2008; Nielsen & Chuang,
2010). We do this for two primary reasons. First, the quan-
tum approach is contrasted with the classical one in order
to elucidate the assumptions that accompany the use of clas-
sical information theory in models of cognition. In doing
so, we also review empirical evidence for violations of the
assumptions that are made by these models and their conse-
quences for modeling heuristic processes. Second, we ex-
amine how the quantum logic framework could be used to
construct heuristic models of cue processing. We show that
doing so has a number of important consequences, focus-
ing on stochastic and continuous representations of cues and
beliefs, rule combination and parallel processing, and cue-
criterion belief entanglement.

We aim to show that ultimately, each of the theories is
enhanced by the integration. Quantum logic implementa-
tions of heuristics inherit many benefits by basing their struc-
ture on simple heuristics. At the same time, heuristics can
gain empirical accuracy and make new predictions by be-
ing implemented in a quantum logic framework. Each of
the constituent theories brings important features to the inte-
gration. Heuristics provide the structure and rules to begin
constructing strategies – such as the search, stopping, and
decision rules that a decision-maker implements (Gigeren-
zer, 2004). They also organize cues in systematic ways and
serve as a computationally simple basis which can be used
as-is to make straightforward models. In turn, quantum logic
provides a more general framework for making cue process-
ing rules, allowing for more flexible (but potentially more
computationally complex) strategies that can enhance the de-
scriptive and explanatory power of heuristics as models of
human decision behavior.

It is worth noting at this point that our interest is primar-
ily in developing better descriptive models of human behav-
ior. Heuristics have a number of additional advantages in
that they are easy to communicate and follow, which allows
them to be well-utilized as prescribed strategies or models
for decision procedures (i.e. what a person should do in a
particular situation). However, our integration of heuristics
with quantum logic is not intended to imply that these pre-
scriptive strategies should also be modified. We hope that the
integration results in a better account of how people actually
make decisions, but do not intend to stake any claims regard-
ing what we should tell them to do in terms of strategies.

An important feature of theory integration that we seek to
illustrate here is that putting theories together results in novel
predictions. We show that our integration results in new
questions and hypotheses regarding the number of cues used,
choice proportions, and the effects of measuring or chang-
ing people’s beliefs about cues and criteria. In order to ad-
dress the new predictions that arise from combining heuris-
tic and quantum approaches, we examine results from work
on recognition memory, perception, game theory, expertise,
and the hindsight bias in decision-making. We conclude by
examining possible extensions and limitations, related con-
cepts of uncertainty, and the overall benefits of integrating
quantum and heuristic approaches.

Heuristics

We define a heuristic as a decision strategy that ignores
some amount of relevant information, usually with the goal
of achieving faster, more accurate, or more frugal decisions.
This definition is similar to the one proposed by Gigeren-
zer & Gaissmaier (2011), though other authors and programs
of research define them in different ways (see Kahneman &
Frederick, 2002; Shah & Oppenheimer, 2008; Simon, 1990).
This definition encompasses a wide range of potential strate-
gies, but common among them is that they specify what cues
should be used and how different sets should be mapped onto
decisions. Many heuristics are based on the Brunswikian
lens model (Brunswik, 1956), which posits that objects in the
environment about which we must make inferences give off

indicators of their state or value [criterion], such as whether
they are a predator or prey, edible or inedible, or larger or
smaller. These indicators are in turn used by a decision-
maker based on how well they diagnose the state of the
world, referred to as the ecological validity of the cue. For-
mally, the validity of a cue v(c) is defined as

v(c) =
# times cue yields the correct inference

# times yields an inference
. (1)

Validity is integral in a number of heuristics, including
the take-the-best strategy (Gigerenzer & Goldstein, 1996;
Gigerenzer et al., 1999). This heuristic ranks cues by their
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validity and checks them from highest to lowest validity un-
til one discriminates between decision alternatives to yield an
inference about the criterion. This presents a reliable route to
a decision – expected accuracy can be approximated by the
validity of the most diagnostic available cue, and the proba-
bility of reaching a diagnosis approaches one as the number
of (non-perfectly correlated) cues inspected increases. More-
over, Gigerenzer & Goldstein (1996) showed that using such
a heuristic can lead to performance as good or better than
other rules and models that use all the cues, such as with a
weighted additive decision rule (see also Martignon & Hof-
frage, 2002).

Similarly, cue use can be constrained simply by their
physical or psychological accessibility. For example, the
ability to recognize a first alternative and not the second pre-
vents a decision maker from immediately accessing other
cues about the second alternative. In essence, no other cues
can be retrieved because no other cue values are known.
However, the lack of recognition for one alternative allows
for use of the recognition heuristic (Goldstein & Gigerenzer,
2002; Pachur & Hertwig, 2006; Pohl, 2006), where one al-
ternative is chosen if it is recognized and the other is not. As
one might expect, this strategy is most effective when recog-
nition is indicative of the actual value of the criterion. How-
ever, its performance also depends on how frequently it can
be used. The recognition heuristic is most effective when the
number of alternatives that are recognized is similar to the
number that are not recognized – this situation will generate
the greatest number of item pairs where one item is recog-
nized and the other is not, so that recognition can be used as
a discriminating cue. As a result, recognizing a limited num-
ber of alternatives can be beneficial by virtue of increasing
the frequency with which the heuristic can be used, referred
to as a less-is-more effect (Goldstein & Gigerenzer, 2002;
Pachur et al., 2011).

Heuristic approaches to decision-making offer a number
of advantages. Most importantly, they provide preset strate-
gies that can be applied to new situations and interchanged
for different environmental conditions, providing a decision-
maker with desirable (if not optimal) outcomes. They are
also implementable by limited-capacity agents, and use a
limited set of cognitive operations that could be combined
and ordered in order to create new strategies. This makes
them easily communicable to other agents, meaning that
they can be developed or learned directly instead of relying
on the comparatively slow modification of behavior-relevant
genes via natural selection (see also Hutchinson & Gigeren-
zer, 2005). From a modeling point of view, the simplicity and
set operations are also convenient, as they can be constructed
using a limited set of quantifiable rules and procedural logic.

Another major advantage of heuristic strategies is that
they do not need to perform the computations required to
estimate the full covariance structure of the available cues.

Because each cue is generally treated independently, these
strategies do not need to consider whether or to what degree
different cues are redundant with one another. Therefore,
they often need much less data in order to generate a suc-
cessful approach, and can be used quite early in the learning
process to gain desirable outcomes. This may make them
more likely to be used to computationally limited agents (hu-
mans), as environmental and selection pressures might favor
these straightforward decision strategies.

Similarly, heuristics are computationally simple in terms
of fitting and predicting data. Because they use few (if any)
free parameters, there is little uncertainty in terms of esti-
mation. In many cases, this may make them parsimonious
explanations of human decision behavior, especially when
limited choice data is available.

As with most models, heuristics have some limitations in
terms of their descriptive accuracy (see also Dougherty et al.,
2008; Gigerenzer et al., 2008, for issues regarding cue valid-
ity and organization). One important feature is the determin-
istic nature of these heuristics. While this makes strategies
computationally simple, a person using a particular heuristic
will always reach the same answer for a given pair of alterna-
tives. As such, they can miss out on explaining the variability
we observe in individuals’ and groups’ behavior.

Some variability in terms of choice predictions can be in-
troduced by including “trembling-hand” errors – difference
choices which occur simply because of some mistake by the
decision-maker. However, even this is not enough to explain
deviations from deterministic behavior. For example, Newell
et al. (2003) found that by applying a criterion of 10% er-
rors, only about 30% of participants searched for informa-
tion, stopped searching, and decided in a manner consistent
with take-the-best (i.e., a deterministic heuristic). One harsh
interpretation of this result is that relatively few people actu-
ally use take-the-best. However, an alternative possibility is
that a deterministic model of take-the-best does not fully de-
scribe how people use the heuristic and that what is needed is
a stochastic model of take-the-best (see also Bröder & Schif-
fer, 2003; Lee & Cummins, 2004; Newell, 2005; Pohl, 2006;
Glöckner & Bröder, 2011; Davis-Stober & Brown, 2011). As
we show later in this paper, a quantum logic architecture of
heuristics provides a principled means to construct just such
a stochastic model of heuristics like take-the-best.

Furthermore, it seems likely that selection pressures in
our evolutionary history would not have favored fully de-
terministic strategies in all situations. This is largely be-
cause they can be exploited in multi-agent interactions – if
opponents are aware of the rules a decision-maker is using,
they can tailor counter-strategies based on what they know
the decision-maker will do. For example, take the matching
pennies game: in this interaction, each of two players places
a penny heads-up or tails-up. Player A receives a reward if
the players’ pennies show different sides and a penalty if they
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show the same sides, whereas player B receives a reward if
the pennies show the same sides and a penalty if they show
different ones. 1 The optimal behavior in this game is to
choose stochastically, 50% heads / 50% tails. If player A
chooses deterministically based on the time of day, surround-
ings, or some other factor, player B may be able to pick up
on these and guarantee a win.

In the face of these challenges, it seems selection pres-
sures might have resulted in the evolution of a mechanism
that can generate response variability and unpredictability.
This matches well with the great variability that we observe
in human behavior (as well as its unpredictability, to the dis-
may of a great many cognitive modelers). Therefore, a suc-
cessful integration might endow heuristics with a mechanism
for generating random or at least variable behavior, in turn
bringing them closer as a description of human behavior.

Another facet behavior that is perhaps difficult to capture
with classical heuristics is that humans can sometimes use
cues that are further down the hierarchy than more valid,
available cues. For example, take-the-best and the priority
heuristic (Brandstätter et al., 2006; Gigerenzer et al., 1991)
both posit a specific order of cue inspection, and they are
quickly falsified by instances where more cues are consid-
ered (Glöckner & Betsch, 2008; Newell & Shanks, 2003;
Pachur et al., 2008). This issue appears largely due to the
strict serial processing hierarchy of the heuristics. Similarly,
the strict serial processing that some heuristic models posit
also struggle with cases of parallel cue processing, despite
the largely parallel nature of information processing in the
brain (McLeod et al., 1998). They might be brought closer
to observed decision behavior, then, by allowing some mech-
anism for bypassing the most valid cues or for processing
multiple cues at the same time. We cover one such method
in our integration.

Finally, heuristics can be limited in their descriptive power
by the binary nature of the cues they use. Even when an un-
derlying construct like recognition seems to be continuous
or at least multiple-valued, a threshold is typically applied
to sort it into one category or another (Brandstätter et al.,
2006). While the ability to adjust the cutoff can be a particu-
larly beneficial adaptation (Pleskac, 2007; Luan et al., 2011),
applying it can throw away valuable information regarding
the source or object of interest. Similarly, disregarding cue
values that are uncertain (e.g. partially recognized or some-
what believed to be present) by skipping them (Gigerenzer
et al., 1991) or assuming them to be a particular value when
unknown (Gigerenzer & Goldstein, 1996) prevents this un-
certainty from being beneficially leveraged in decisions.

It is important to note that not all of these characteristics
are ubiquitous across all programs and heuristics – for in-
stance, continuous cues and parallel processing can be de-
liberately implemented (Hogarth & Karelaia, 2007). But the
tendency of heuristics to possess deterministic, serial, and bi-

nary properties is no coincidence. As we illustrate in the next
section, they arise because heuristics in their current form
rely on a classical logic framework. This need not be the
case. Instead, heuristics can be reconstructed using alterna-
tive logical frameworks that address many of these issues. In
later sections, we show that quantum logic offers an attrac-
tive alternative that produces probabilistic choice behavior,
shows how cue processing can unfold in and transition be-
tween serial and parallel, and represents uncertainty in cues
and beliefs such that it can exploit uncertainty to achieve
potentially better performance. At the same time, fast and
frugal heuristics provide important theoretical guidance to a
quantum logic architecture in terms of modeling human cog-
nition. As we will show, heuristics provide psychologically
plausible rules, computational simplicity, and efficiency to an
architecture that can easily drift away from these properties.

Information processing

Particularly in the early days of computing, information
theory was deliberately used as a formal basis for models of
cognitive processes, including perception and schema acti-
vation (Axelrod, 1973), conceptual reasoning (Sowa, 1983),
perceptual discrimination, and working memory (Beebe-
Center et al., 1955; Garner, 1953; Miller, 1956; Pollack,
1952). While many current theories of cognition follow in
the same tradition of information processing, few modern
ones explicitly utilize the formal components of information
theory.

The formal mathematical structure underlying informa-
tion processing uses Boolean logic and algebra, transforming
bits of information conditional on the inputs and structure of
logical operators [gates]. Doing so allows a modeler to re-
duce many theories of cognitive processes to a formal math-
ematical form, and elucidates some of the basic assumptions
of models or theories that are based on classical logic. In
turn, the principles and implications of classical logic can be
tested so that we might judge their suitability as a basis for
modeling cognition. To facilitate this comparison in terms
of heuristic processes, we briefly examine how beliefs about
cues and criteria are represented with classical information
theory and the basic operations that can be done with these
representations.

Belief representation

Beliefs about the value of a cue or criterion are represented
as binary values, either present [1] or absent [0]. This entails
the assumption that cognitive representations are character-
ized by discrete states, suggesting that only one set of beliefs
or preferences is present at any given point in time. This

1A realistic analogy would be a prey animal (player A) that can
run left or right encountering a predator (player B) that can choose
to run left or right.



QUANTUM HEURISTICS 5

makes measurement of a state extremely straightforward; a
state already exists, so it needs only to be read out of the
cognitive system.

Combinations of beliefs about cue or criterion values can
then be represented as a series of bits. For example, beliefs
about a pair of cues could be represented as [00], [01], [10],
or [11]. Our beliefs about a single alternative (e.g. disease
present / absent) can be represented using one bit, but if
we must make a comparison between two alternatives (e.g.
which person is more ill), this also requires two bits. In
this case, [01] would indicate that the second person is more
ill, [10] would indicate the first person is, and [00] or [11]
states would be ambiguous, indicating a non-decision state
that would have to be altered in order to directly generate a
final choice. To represent beliefs about a pair of cue and a
pair of criterion values together, we would need at least 4
bits, yielding 16 possible joint states (e.g. [0000], [0101], or
so on).

Note that stringing together bits is also a method for repre-
senting more complex cue or criterion beliefs: as the number
of bits corresponding to one representation increases, the pre-
cision it can provide doubles as well. The greater precision in
representations trades off with greater storage and processing
demands, as more bits and larger logic gates are required to
represent and operate on more precise beliefs.

Much of the work integrating psychology and formal in-
formation theory has looked at the issue of storage capac-
ity or discrimination in terms of the number of bits that
can be used(Beebe-Center et al., 1955; Garner, 1953; Pol-
lack, 1952), processing chunks of information (Baddeley &
Hitch, 1974; Chase & Simon, 1973; Miller, 1956; Wickel-
gren, 1979). Though not often discussed explicitly in terms
of bits, similar discrete-valued representations underlie cur-
rent slots models of visual working memory as well (Alvarez
& Cavanagh, 2004; Awh et al., 2007; Luck & Vogel, 1997).
We next visit how chunking and other processes might take
place by establishing the operators that are used to transform
bits.

Logic gates

The three most basic operations that can be performed on
bits or pairs of bits are the NOT (¬), OR (∨), and AND (∧)
transformations, which can be represented either as logical
propositions or as circuits (Figure 1). The NOT operator
simply inverts one bit, changing [0] (false) 7→ [1] (true) or
[1] 7→ [0]. The OR and AND gates operate on pairs of bits,
returning a [1] if one (for OR) or both (for OR and AND)
inputs are [1], and returning [0] otherwise.

By stringing together these three operators, it is possible
to specify any classical logic operation. For example, sup-
pose we wanted to set a third bit to one if two initial bits
were both one – or more concretely, say hello to someone if
you recognize both their face and their gait. This could be

Figure 1. Circuit representation and input-output mapping
of basic AND, OR, and NOT gates. Input bits come in the
left side and yield outputs out the right side according to the
pattern given below each gate.

written as a circuit or as an equation, where response R1 can
be written as a function of cues for facial recognition F, gait
G, and initial response intention R0.

R1 = (F ∧G) ∧ (R0 ∨ ¬R0) (2)

Note that we include R0 because a person could initially
want to say hello even if they don’t wind up recognizing a
person’s face and gait. In essence, R0 can build in initial
beliefs or response biases. Heuristic models of behavior do
not ordinarily incorporate initial beliefs. However, initial be-
liefs or states have proven particularly important for cogni-
tive process models such as those built using the frameworks
of signal detection and random walk models of decision-
making (Green & Swets, 1966; Link & Heath, 1975; Pleskac
& Busemeyer, 2010). In terms of information theory models,
the initial state serves as the locus for a person’s internal be-
liefs, which change across consideration of cues and control
a person’s behavior.

Aside from AND and OR, there exist four other common
2-bit gates: NOR, NAND, XOR, and XNOR. These are of-
ten used because NOR gates or NAND gates can by them-
selves be used to compute any classical logic operation with-
out relying on any other operators (Peirce, 1880; Büning &
Lettmann, 1999). However, since we can use AND, OR, and
NOT to construct any of these other operators, we leave the
rest alone here for simplicity.

When used in tandem, these 2-bit gates can implement
any sort of logical rule. However, this has two drawbacks.
The first is that a person needs to have many different kinds
of gates in order to implement the variety of processing rules
they are likely to need. This means that the brain has to pro-
duce structures that implement each of the 2-bit gates as well
as organize them in sensible ways. While not prohibitively
difficult, it perhaps does not provide great credence to sys-
tems of 2-bit gates as good descriptions of choice architec-
ture.

Another limitation of the 1- and 2-bit gates we have dis-
cussed so far is that they are not reversible, meaning that one
cannot infer the inputs to the gates from their outputs because
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the gates produce fewer bits than they receive. This means
that some inputs are are simply lost, letting the metabolic
cost of computing them go to waste (in a computer, the en-
ergy dissipates as heat, but it is not clear what the biological
consequences would be) unless they are stored somewhere in
memory.

There is a simply solution to both of these problems,
which is to use a 3-bit, reversible gate that can implement
any logic operation by itself (or rather with multiple itera-
tions of itself). One such gate is the Toffoli gate, shown in
Table 1. This operator checks that two bits are in the state
[11] and flips a third bit if so, yielding [110] 7→ [111] and
[111] 7→ [110] but leaving the triplet unchanged otherwise.
The full truth table for this gate is shown below.

Outputs
Inputs 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0

Table 1
Input-output mapping of a Toffoli gate

The Toffoli gate can actually be strung together with many
other Toffoli gates, together allowing them to perform any
logical operation and therefore implement any classical pro-
cessing rule. It is thus referred to as a universal gate. This
gate is also reversible, meaning it does not lose any infor-
mation as it is processing incoming bits (though the biologi-
cal or psychological implications of information loss are not
clear). The Toffoli gate could therefore be mass-produced
and arranged as needed, making it potentially useful as a
computational tool describing how information is processed
in the brain. We return to this issue a bit later on, as quantum
logic also provides universal, reversible information process-
ing gates like the Toffoli gate.

Relation to heuristics

Heuristics are typically modeled in terms of classical
logic, which has made it well-suited to modeling using rule-
based cognitive architectures like ACT-R (Marewski et al.,
2010; Schooler & Hertwig, 2005), as well as circuit and
equation representations (Martignon & Hoffrage, 2002). For
our purposes it is useful to examine how heuristics would be
implemented as a circuit. Because it can illustrate the basic
principles we focus on the recognition heuristic.

The recognition heuristic is a well-studied single-variable
decision rule that relies on recognition alone to make a judg-
ment about an unknown criterion value (see for example

Goldstein & Gigerenzer, 2002; Marewski et al., 2010, 2011;
Oppenheimer, 2003; Pachur & Hertwig, 2006; Pohl, 2006;
Volz et al., 2006). When people are given a two-alternative,
forced-choice question, the recognition heuristic states: If
one of the two objects is recognized and the other is not,
then infer the recognized objects has the higher value with
respect to the unknown criterion value (Goldstein & Gigeren-
zer, 2002).

Like many heuristics, recognition exploits information in
the environment. In this case, the reason we recognize ob-
jects is because of some other mechanism or variable. For
example, the cities we read and hear about (and therefore
recognize) tend to be the more populous cities (Goldstein &
Gigerenzer, 2002; Schooler & Hertwig, 2005). Thus, recog-
nition of a city can be a valid cue of city population. As
Goldstein & Gigerenzer (2002) went on to show the recog-
nition heuristic allows people with little knowledge to in
some cases outperform for knowledge people in making in-
ferences, yielding the less-is-more effect.

Figure 2 illustrates how the recognition heuristic can be
implemented using the 3 basic logic gates (NOT, AND, OR).
A string of 4 bits is fed in on the left side, corresponding to
the two recognition values of the items (c1 and c2) and a per-
son’s initial beliefs or preferences about their values on the
criterion (b1 and b2). As with the basic logic gates shown in
Figure 1, bits are fed into the various logic gates by moving
from left to right along the circuit. One bit value is sent to
multiple locations where the circuit forks. The output of each
gate is fed forward as a bit until reaching the right side of the
circuit, where beliefs are measured or evaluated to determine
the next response or action.

Figure 2. Example implementation of the recognition heuris-
tic, where b1 and b2 correspond to a person’s beliefs about
the criterion for items 1 and 2 (b′1 and b′2 give the revised
beliefs), and c1 and c2 correspond to whether items 1 and 2
are recognized, respectively.

To be more specific, let us focus on the top half of the
diagram and assume that b1 = 1 (e.g. believe that city 1 is
large) and c1 = 0 (don’t recognize city 1). The [1] for b1 goes
to two places: directly to the lower AND gate, and through
a NOT gate (turning into a [0]) to the upper AND gate. The
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cue c1 goes to both of the AND gates as well. In this case,
both AND gates will fail – the upper gate receives [00] and
the lower one receives [10]. This means that both will pass
a [0] along the circuit to the OR gate to their right. Since
the OR gate then receives [00] as inputs, it will out put a [0],
which is the revised belief b′1 = 0 (city 1 is not large). The
bottom circuit works in exactly the same way for a different
cue-criterion belief pair (b2 and c2) to produce b′2.

The construction of this circuit essentially copies the cue
values c1 and c2 onto beliefs b′1 and b′2, ignoring the initial
values b1 and b2. Note that these beliefs still must be mapped
onto a decision. There is an additional step that must be taken
to transform the final beliefs b′1 and b′2 onto actions. If a cir-
cuit produced [b′1b′2] = [10], it would result in a decision in
favor of the first alternative, and producing state [01] would
result in a decision favoring the second alternative. On the
other hand, states [b′1b′2] = [11] or [00] could result in a guess
if there were no more cues available, or be fed back into the
circuit as [b1b2] with another set of cues for the next step.

The result of this circuit is largely unsurprising, as it just
implements the recognition heuristic it is supposed to run.
However, the diagram is useful for several reasons. One
reason is that take-the-best (Gigerenzer & Goldstein, 1996)
can be understood as a generalization of the one-cue decision
rule shown in Figure 2. Take-the-best is also a well-studied
heuristic that ranks cues by their validity and then uses them
one by one to discriminate between alternatives (e.g., Bergert
& Nosofsky, 2007; Bröder, 2000; Gigerenzer & Goldstein,
1996; Newell & Shanks, 2003; Lee & Cummins, 2004). In
take-the-best, each cue processing would pass through an-
other circuit identical to the one shown in Figure 2, only with
the next set of cues and revised beliefs as inputs. As long as
there were more cues available and no response had been
made (checks which could also be done using logic gates),
the decision-maker would continue iterating through similar
circuits. Thus, a classical circuit representation of take-the-
best can be constructed using multiple repetitions of the one
shown in Figure 2.

Another useful aspect of the circuit is that it illustrates
some important properties of a classical logic approach.
First, the output of the circuit is determined as soon as be-
lief and cue values are put into it. While it is possible to
modify our framework to assume that the actual logic gates
are probabilistic or that people are accessing their cue or cri-
terion beliefs with some noise, the basic behavior of these
logic circuits is deterministic.

An additional thing to note is that the gates in the diagram
above must be executed in serial. For each belief-cue pair, the
OR gates strictly follow the AND gates, and revised beliefs
b′1 and b′2 must be calculated before the next step can begin.
While larger gates can be constructed to address this issue, a
person would have to somehow compute the full joint input-
output relationship of such a gate, a mapping which we have

shown grows exponentially with the number of cues.

Finally, the inputs must be determined in order to be trans-
formed using the logic gates. Each gate only accepts binary
inputs, meaning that any uncertainty regarding a person’s be-
liefs or the perceived cue values must be resolved before us-
ing the circuit. Previous work has assumed that if cue value
is unknown, it is treated as if it were zero (Gigerenzer &
Goldstein, 1996) or simply skipped altogether (Gigerenzer et
al., 1991; Hoffrage et al., 2000). Alternatively, as with the
recognition heuristic, there might be some threshold applied
to divide continuous values into [0] or [1] based on whether
or not it exceeds a critical value (see e.g. Brandstätter et al.,
2006; Luan et al., 2011; Pleskac, 2007; Schooler & Hertwig,
2005).

Unfortunately, each of these three characteristics of clas-
sical logical processing seems to deviate from the empir-
ical evidence. Experimental evidence has long suggested
that decision-making is better described as a stochastic than
deterministic process (Audley, 1960; Balakrishnan & Rat-
cliff, 1996; Busemeyer & Townsend, 1993; Davidson &
Marschak, 1959; Simon, 1959), that strategies can involve
parallel processing of cues (Cave & Wolfe, 1990; Egeth et
al., 1972; Townsend & Wenger, 2004), and uncertainty is
used rather than ignored in decisions (Hogarth, 1987; Simon,
1959). The continuous has already caused issues for classical
logic-based heuristic and ACT-R theories of recognition, as
some nonlinear shapes of typical receiving operator charac-
teristic curves [ROCs] suggest that recognition may not be
discrete (Anderson et al., 1998a; Qin et al., 2001; Schooler
& Hertwig, 2005; Yonelinas & Parks, 2007) (but see also
Malmberg, 2002). Oddly, even theories that posit discrete
recognition rely on some underlying continuous value, such
as familiarity (see e.g. the theory proposed by Bröder &
Schütz, 2009). We are ambivalent on the particulars of this
debate, but the recurrence of continuous cue values in mod-
els of recognition processes certainly suggests the existence
of underlying continuous (or at least graded) representations.

Quantum models of cognition

Although the classical Boolean logic approach provides
one basis for constructing cognitive models of cue-based
decisions, this is not the only way to approach these mod-
els. Generalized Boolean algebras and semi-ordered lattices
serve as less restricted mathematical foundations from which
to build models (Manes, 1976). Though these can take a
number of forms, we focus on a relatively simple and well-
studied alternative based on quantum logic. This approach is
particularly useful because many of its formal properties di-
rectly address the shortfalls of classical logic that we covered
in the last section.
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Rules and violations of classical logic

Recall that Boolean logic is defined by binary-valued rep-
resentations which are transformed using intersection / AND
(∧), union / OR (∨), and negation / NOT (¬) operations.
Three of the axioms of Boolean logic are commutativity, dis-
tributivity, and complementarity. Formally, these mean that
for events A, B, and C, the following equalities hold:

Commutativity: B ∧ A = A ∧ B

Distributivity: A ∧ (B ∨C) = (A ∧ B) ∨ (A ∧C)
Complementarity: A ∧ ¬A = 1

(3)

These three axioms taken together imply that the follow-
ing relation must also hold:

(A ∧ B) ∨ (A ∧ ¬B) = A ∧ (B ∨ ¬B) = A (4)

These laws have been violated directly or indirectly in em-
pirical studies of human judgment and decision-making. For
example, work on order effects in sequential questions has
shown violations of commutativity – in these studies, the or-
der of a pair of responses that a participant is asked to make is
varied, which leads to different probabilities of responding to
the same question based on whether it is asked first or second
(Hogarth & Einhorn, 1992; Trueblood & Busemeyer, 2011;
Wang & Busemeyer, 2013; Wang et al., 2014).

Work on decision-making under uncertainty has also un-
covered violations of distributivity and complementarity. If
a person prefers one item over another (preference state C)
under one condition B, giving C ∧ B, as well as under the
complementary condition ¬B, giving C∧¬B, then she should
prefer the same item when she is unsure of the state of the
world, C ∧ (B ∨ ¬B). Though it is formulated based on the
distributivity and complementarity axioms of classical logic,
this is also referred to as the sure thing principle (Savage,
1954). This principle was violated in a number of empiri-
cal studies – notably, participants who were offered two se-
quential gambles were willing to take the second gamble if
they knew they had won the first gamble or if they knew they
had lost the first, but chose not to take the second gamble
if they were unsure of the outcome of the first one (Tver-
sky & Shafir, 1992a). Similarly, in the two-player Prisoner’s
Dilemma game, participants chose to defect if they knew the
other player had chosen to defect or if they knew the other
player had chosen to cooperate, but did not choose to de-
fect if they were unsure whether the other play had cooper-
ated or defected (Busemeyer et al., 2006; Tversky & Shafir,
1992b). This is referred to as a disjunction effect, which vio-
lates Equation 4 above.

Empirical violations of the law of total probability have
also appeared on a number of tasks, including inferential de-
cisions like those that are featured in studies of fast and fru-
gal heuristics. For instance, Townsend et al. (2000) showed

participants a series of faces. On some of the trials, they had
to categorize the faces as friendly or hostile (i.e. decide on
a cue value) and then decide whether to be friendly or de-
fensive. On other trials, they simply decided whether to be
friendly or defensive. Oddly, participants tended to be more
defensive when they made no categorization than when they
did (collapsed across ‘friendly’ and ‘hostile’ categorization
decisions).

Classical models, including heuristic models, typically as-
sume that participants should reach the same decision (act
friendly or defensive) on the two different types of trials.
This is because the logical rule shown in Equation 4 implies
that the marginal probability of being defensive should be
the same across the two different conditions. Being more
defensive on trials without a categorization than with cate-
gorization is a violation of a classical logic rule. This em-
pirical violation has, however, been replicated several times
and shown to be consistent with a quantum model of the de-
cision process (Busemeyer et al., 2009; Wang & Busemeyer,
2016b).

Order effects and implications for modeling frame-
works. The axioms we outline above are implicitly as-
sumed in models of cognition that are based on classical
logic information processing and classical probability. This
encompasses both classical logic-based heuristics as well as
more complex frameworks like Bayesian models of belief
updating. Neither one would predict order effects a priori.
For example, asking a person what they believe the value of
a cue is (e.g. “Does city X have a major league baseball
team?”) should not affect their beliefs with regard to a cri-
terion (“Is the population of city X greater than 500,000?”)
according to classical models, but it is well-established that
these and similar effects occur across tasks and contexts (At-
manspacher & Römer, 2012; Busemeyer et al., 2006; Hog-
arth & Einhorn, 1992; Kerstholt & Jackson, 1998; Khren-
nikov & Haven, 2009; Kvam et al., 2013, 2015; Moore, 2002;
Pothos & Busemeyer, 2009; Townsend et al., 2000; True-
blood & Busemeyer, 2011; Tversky & Shafir, 1992b; Wang
et al., 2014; Wang & Busemeyer, 2016b).

Interestingly, work by (Holyoak & Simon, 1999) has sug-
gested that beliefs about cues can be impacted by beliefs
about choice criteria (e.g. the verdict on a person’s guilt)
as well as by the values of earlier cues (Glöckner, 2007).
Such interactions between cues and criteria provide a sub-
stantial stumbling block for models of cue-based decisions,
and particularly for Bayesian belief updating models that
suggest that people reason unidirectionally from cues to cri-
teria. Quantum logic, as we show later, proposes a mecha-
nism by which this could occur based on entangled cues and
beliefs.

These sorts of order effects and other violations of clas-
sical probability rules are often taken for granted partly be-
cause adding additional components to the models can some-
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times account for violations, so individual violations are seen
as unique psychological phenomena rather than a systematic
issue with our approach to modeling cognition. However,
such modifications must often be made post hoc and tend
not to be sufficiently general to explain even a single type of
violation across all of the tasks in which it appears.

A reasonable question might be raised as to why we in-
troduce a quantum framework rather than shifting to a classi-
cal probability or Bayesian approach to describing cognition
(Griffiths et al., 2010). While such approaches can certainly
add stochastic elements, parallel processing, and continuous
beliefs, they still adhere to the rules of classical probabil-
ity. As such, the violations we described above remain ex-
tremely problematic. Furthermore, shifting to a Bayesian
framework prevents us from implementing simple rules us-
ing logic gates. Instead, it requires a more complex process-
ing infrastructure to deal with joint probability distributions
over all combinations of beliefs, updating of internal proba-
bilities (or probability mass / density), as well as consider-
ation of factors such as cue covariances. For these reasons,
we do not visit Bayesian models or other classical probability
models of decision behavior in much detail here.

This leaves us with the question of whether we should
continue to ground heuristics and other models in classical
logic and probability frameworks, modifying them as needed
to account for new violations of classical laws. Alternatively,
it may be useful to consider a framework whose first prin-
ciples are well-suited to describing and predicting behavior
that violates these rules. In the following sections, we pursue
the latter option by proposing quantum logic as an alternative
framework for constructing information processing models.

Quantum logic

One solution to account for the persistent violations of
classical laws is to add additional cognitive assumptions to
the models, such as belief revision (Hogarth & Einhorn,
1992) or motivated reasoning (Tversky & Shafir, 1992b). We
pursue an alternative solution to the persistent violations of
classical laws, which is to apply quantum probability to mod-
eling cognition and ask if these models based on their first
principles better account for decisions. Models built using
this quantum framework have been used to model violations
of commutativity (Trueblood & Busemeyer, 2011; Wang &
Busemeyer, 2013), distributivity / the sure thing principle
(Pothos & Busemeyer, 2009), and the law of total probability
(Busemeyer et al., 2009; Khrennikov & Haven, 2009; Kvam
et al., 2015). Quantum models are able to violate these ax-
ioms because they use different formal representations, trans-
formations, and measurement operators to describe a system.

The formal underpinnings of quantum probability mod-
els can be used to construct a quantum system of logic.
While the application of quantum logic to model cognitive
processes is a recent innovation, these sorts of models have

been used previously in quantum computing and informa-
tion, so the basic principles are well-established (see Nielsen
& Chuang, 2010; Barenco et al., 1995; Busemeyer & Bruza,
2012). Instead of readable bits and logic gates, quantum
logic is based on qubits, measurement operators, and unitary
processing gates.

Here, we introduce these basic concepts, show how they
can be used to re-construct heuristics and other rule-based
models, and examine what diverging predictions they make
when we compare them to heuristics based on classical logic.
Our coverage of quantum probability models is not exhaus-
tive, but here we aim to give readers enough information
so that they have a basic understanding of how and why
quantum logic can be used to model information process-
ing, and hopefully provide sufficient background that readers
could construct several heuristics on their own (for a more
complete introduction and tutorial, see Busemeyer & Bruza,
2012; Yearsley & Busemeyer, 2015).

States & measurements. Rather than using bits, quan-
tum logic represents pieces of information as qubits. The
fundamental difference between qubits and bits is that qubits
can exist in a continuous superposition state of both 0 and 1
simultaneously rather than discrete values. This superposi-
tion state can be represented as a vector in two dimensions,
where each dimension corresponds to a value the qubit can
take – for example, one dimension could correspond to a
“cue present” response and the other to a “cue absent” re-
sponse. The two vectors |0〉 and |1〉 serve as bases for describ-
ing the superposition state, so a qubit can be represented as
a linear sum of the two, B = b0|0〉 + b1|1〉.2 The coefficients
b0 and b1 represent probability amplitudes, which are used
to determine the probabilities of obtaining a |0〉 or a |1〉 when
the qubit is measured (i.e., when a decision about the cues
or criteria is made). Note that these probability amplitudes
can actually take on both real and imaginary or complex val-
ues, but for simplicity all of our examples use strictly real
numbers.

The superposed qubits also correspond to some of our in-
tuitions about how we represent states. Rarely do we have a
definite belief about whether a particular city has greater or
fewer than 1 million inhabitants, but it often seems the case
that we have a feel or ‘fuzzy’ impression of the city being
large or small (somewhat similar to fuzzy set theory Klir &
Yuan, 1995). The continuous superposition state provides a
formal representation that describes these sorts of vague be-
liefs as well as makes a number of empirically testable pre-
dictions.

In order to observe an output from a quantum state, as in
making a binary decisions, one needs to measure it. That is,
in quantum models of cognition a judgment or a decision is

2This is referred to as “ket” notation. For simplicity, one can
assume (for example) that |0〉 is the x dimension and |1〉 is the y
dimension as shown in Figure 3.
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a measurement applied to a person’s cognitive state (Buse-
meyer & Bruza, 2012). Measurement of a quantum state is
taken by projecting it onto the corresponding basis (or bases),
with the probability of obtaining a particular value given by
the squared length of the current state along that basis vector
(see Figure 3). The value of a single qubit is measured by
projecting it onto the |0〉 or |1〉 basis, with the probability
of obtaining 0 or 1 given by the squared length of the qubit
along the |0〉 or |1〉 basis vector, respectively. Note that by
virtue of being unit length, the probabilities of obtaining a
[0] or a [1] sum to unity, |b0|

2 + |b1|
2 = 1. Once a qubit is

measured, it ’collapses’ on the observed state, reducing the
probability amplitude in the complementary state to zero. In
essence, measurements create a definite state from an indefi-
nite one.

For example, an initial state may begin in a superposition,
ψ = b0|0〉+b1|1〉. If a measurement is applied and obtains the
outcome |1〉, the new state must be revised to reflect this. As a
result, the state after measurement ψ′ is no longer in a super-
position state but rather equal to the definite state, ψ′ = |1〉.

Figure 3. Representation and measurement of a qubit |B〉.
While b0 and b1 can be negative or even complex, their
squared lengths must sum to unity.

Critically, quantum logic models based on qubits are in-
herently stochastic, but they can be restricted so that they can
only be in definite states |0〉 or |1〉. For example, we could set
b1 = 0 or b1 = 1 in Figure 3 and obtain fully deterministic
behavior from the qubit. In this case, they will behave ex-
actly like classical deterministic bits. This makes the qubit
representation a general case of the bit. As we show later,
information processing in the quantum framework is also a
general case of information processing in the classical one.
Quantum logic implementations of heuristics are therefore a
general case of classical logic implementations – they can do
everything exactly as classical deterministic heuristics does
or they can be permitted to vary more freely to provide closer,

stochastic descriptions of human behavior.
As we will see in the next section, a person’s beliefs about

cue or criterion values need not be resolved before being
used, allowing indefinite (uncertain) beliefs or cues to be
used in decision strategies rather than ignored or assumed
away. The quantum notion of uncertainty is a bit different
than that of the classical models – rather than uncertainty
regarding external events like population size due to a lack
of knowledge, a person can have internal uncertainty about
their own beliefs. We visit the distinction between types of
uncertainty in more detail in the discussion.

As a result of the use of superposition states, we obtain
both stochastic behavior as well as incorporate uncertainty
regarding cues and criterion values. Therefore, the introduc-
tion of the qubit addresses two of the major deficiencies that
were elucidated when we examined the classical information
theory approach to heuristics.

Compound states. In the classical bit-based frame-
work, we could simply string together sequences of bits in
order to form bit strings. The same can be done in the quan-
tum framework – a series of coordinates can describe a string
of qubits – but by using qubits to represent a person’s beliefs
about cues and criteria, it is actually possible for them to in-
teract with one another. In such a case, not only do cues affect
criterion judgments, but revision or measurement of criterion
beliefs can affect a person’s beliefs about the cues as well
(similar to what is described in hindsight biases or parallel
constraint satisfaction; see Hoffrage et al., 2000; Glöckner,
2007).

Multiple qubits can be combined by assigning a probabil-
ity amplitude to each of the combinations of their potential
values. For example, a pair of qubits can be described using
four basis vectors, describing the 4 combinations of measure-
ments one could obtain: |00〉, |01〉, |10〉, and |11〉. The super-
position is a linear combination of these four possibilities,
ψ = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉. When the fist qubit
is measured, the probability of obtaining a 1 for the first qubit
(for example) is |c01|

2+|c11|
2. After measuring a 1 for the first

qubit, the qubit would collapse on states |01〉 and |11〉.
The simplest way to combine (⊗) two superposition states

(either individual qubits or sets of qubits) is to take their outer
product, ψa ⊗ ψb, yielding a superposition over the possi-
ble combinations of their states. 3 If we combine qubits
A and B using this method, we will obtain a joint state
ψab = a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉. As with
individual qubits, the sum of the squared lengths of the coef-
ficients will sum to one if they are combined in this way.

Critically, a superposition over two qubits can exist with-
out combining them via the outer product, such that ψab =

3The Kronecker product of two matrices is a generalization of
the outer product from vectors to matrices. The Kronecker product
of two matrices X and Y can be easily computed in Matlab with the
function kron(X,Y) or in R with kronecker(X,Y,...).
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c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉, where c00 , a1b1 and/or
c01 , a1b2, and so on. The two qubits are then said to be
entangled. In this case, measuring one qubit affects the mea-
surement of the other. As a result, an entangled state cannot
be separated into two independent qubits.

For example, imagine trying to measure the entangled
state ψ12 when c00 =

√
.5, c11 =

√
.5, and c01 = c10 = 0.

If we measure the first qubit and obtain a 1, this forces the
joint (entangled) state to collapse on |10〉 and |11〉. The new
state would be ψ′12 = |11〉 (since there is no amplitude on
state |10〉). Note that this affects the potential measurements
on the second qubit! We can no longer obtain a value of 0
when we measure the second qubit because we obtained a
particular measurement on the first qubit. This has impor-
tant consequences for how cues are processed and become
paired with beliefs. Ultimately, it leads us to predict both or-
der effects and provides a structural explanation of why the
hindsight bias phenomenon occurs.

Conceptually, a superposition state representation of our
beliefs about cues or criterion values corresponds to a type
of uncertainty about their value. With a superposition repre-
sentation of an unknown binary cue value, a person consid-
ers both possibilities simultaneously rather than directly as-
signing discrete 0 / 1 values or probabilities to the outcomes.
This is in stark contrast to the assumption made in heuristics,
where unknown values are assumed to be 0.4 In essence,
a qubit-based representation allows people to utilize uncer-
tainty in their decisions rather than forcing them to assume
it away or abandon cues. Additionally, it suggests that new
information interacts with uncertain states differently than in-
dividual, certain states. The ultimate effect of this difference
in representation becomes more clear as we see how qubits
interact with the gates used to process information.

U-gates. Recall that in binary logic, we used logic gates
to operate on bits of information. In the quantum logic
framework, we instead use unitary gates [U-gates] to trans-
form qubits or sets of qubits. A unitary gate can be de-
scribed by the operations it performs (rules it implements) or
in the form of a matrix operator that is multiplied by its input
qubit(s). Several of the important unitary gates are shown in
Figure 4.

Conceptually, applying a unitary operator to a qubit belief
state is similar to rotating it in a multidimensional space – in
fact, rotations of vectors in real space are unitary transforma-
tions. This means that they are fairly flexible in terms of how
they can change a qubit. We therefore focus on a few key
gates that are most useful for modeling heuristics, but there
are more that can be used and adapted based on the strategies
a person could be implementing.

Of course, the flexibility of these U-gates is not always a
benefit. In many cases, as with the Uθ gate shown in Figure
4, they introduce free parameters that must be set both by the
decision-maker as well as by the modeler attempting to esti-

mate a U-gate-based model. This makes them computation-
ally more complex than the classical gates and deterministic
models, which carries the potential risk of overfitting.

One of the simplest U-gates that can be used is called
the Pauli-X gate. This gate simply flips a qubit, chang-
ing its value along |1〉 to its value along |0〉 and vice versa.
For example, a qubit ψ = [

√
(.9);

√
(.1)] would become

ψ′ = [
√

(.1);
√

(.9)]. The matrix representation of this gate is

Pauli-X: σx =

[
0 1
1 0

]
(5)

The Pauli-X gate can be interpreted as a NOT gate, as it in-
verts whatever qubit is put into it.5

As in the classical framework, the quantum NOT gate
can be applied in series with other gates, allowing for serial
processing of series of bits. However, it can also be com-
bined with other operations in order to perform more com-
plex transformations of multiple qubits. For example, we use
a controlled-NOT or CNOT gate heavily in our implementa-
tion of the recognition heuristic and take-the-best. This oper-
ator is particularly useful because it can implement rules that
are structured in an “if-then” way. It applies a NOT (qubit-
flip) transformation to turn on a qubit that is off (|0〉 → |1〉) if
a particular cue is observed, making it ideal for modeling the
cue-triggered rules specified by heuristics.

The CNOT gate is shown in Figure 4 along with two other
important gates that we use to implement quantum logic
heuristics. This gate checks the value of a first qubit (top
two rows of a 2-qubit [4-row] state), and inverts the entries
of a second qubit (bottom two rows of a 2-qubit state) if it
has a value along |1〉.

Another important gate is called the Hadamard gate,
shown on the right side of Figure 4. This gate takes a sin-
gle qubit (ψ = |0〉 or ψ = |1〉) and rotates it by 45 degrees.
If the qubit is in a definite state – as it would be after be-
ing measured – this gate randomizes its next measurement so
that the probabilities of obtaining a 1 and obtaining a 0 are
equal. Application of this gate allows a person to get random
measurements, in essence allowing them to choose randomly
between a pair of alternatives. It can therefore be applied to
the final belief states when all cues have been exhausted in
order to permit random guessing behavior. Accordingly, this
gate is applied at the final step of take-the-best (shown be-
low) as a method of generating guesses when no more cues
are available.

4This assumption is not made explicitly, but the outcomes of
unknown “?” cue values is practically equivalent to values of zero
in terms of choice outcomes.

5On top of serving as a NOT gate, this is one of the Pauli spin
matrices (Pauli-X) that serve as the basis of many unitary transfor-
mations, along with Pauli-Y and Pauli-Z transformations (Nielsen
& Chuang, 2010). To apply it, one multiplies the gate’s matrix by
the qubit vector, ψ′ = σxψ.
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Figure 4. Representations and applications of several important U-gates.

More on U-gates. A more general version of the
Hadamard gate, the (Euler) rotation operator Uθ, is shown on
the left side of Figure 4. Unlike the gates we have discussed
so far, this gate utilizes a free parameter θ that controls how
far the gate rotates a qubit. While doing so adds complexity
to the model, it may in some cases be justified. For example,
this gate allows for qubits to be partially rotated depending
on how convincing a cue is to a particular individual.

As with the CNOT gate, the operation of any unitary trans-
formation can be controlled by a separate qubit. For exam-
ple, one could control the operation of the rotation matrix by
forming the larger operator UCθ:

UCθ =


1 0 0 0
0 1 0 0
0 0 cos(θ) −sin(θ)
0 0 sin(θ) cos(θ)

 =

[
I2 0
0 Uθ

]
(6)

Other controlled operations can be implemented by substi-
tuting different unitary transformations for Uθ in the bottom
right corner.

In addition, transformations can be controlled by multi-
ple qubits using doubly-controlled gates. For example, one
might note that the Toffoli truth table from Table 1, when put
in matrix form, is also a unitary gate. It is in fact a CCNOT
gate, where a third bit is flipped if the first two have values
along |1〉.

Interestingly, the CCNOT gate is a special case of the



QUANTUM HEURISTICS 13

Deutsch gate (Deutsch, 1989), and can be used in conjunc-
tion with definite-state qubits to implement any operation
that exists in classical logic. The quantum logic framework
we have described can therefore implement any classical
logic heuristic, but its more general structure allows for it
to be potentially more empirically accurate.

It is important to note at this point that qubits can imple-
ment bit-based logic (by being set to the definite states |0〉
or |1〉) and U-gates can implement any classical logic oper-
ation. This permits quantum logic to execute any decision
strategy that can be created using classical logic. In many
cases, it may be useful to use the classical logic implemen-
tations – for example, when one desires computational sim-
plicity and fewer free parameters – but this does not speak
against a quantum logic approach more generally. Instead,
the multitude of cases where quantum logic can provide a
better description of behavior suggest that it can be used as
the general case, while deterministic or classical heuristics
can serve as simpler special cases.

In addition to controlled gates, multiple qubits can be pro-
cessed in parallel by simply combining the gates together and
combining the qubits together. In the same way that qubits
can be combined by taking the Kronecker product of the
two vectors, two unitary transformations can be combined
by taking their Kronecker product as well, U12 = U1 ⊗ U2.
The new unitary matrix can then be applied to a (Kronecker-
combined) pair of qubits, with each unitary transformation
affecting one of the qubits individually.

U12 · ψ12 = (U1 ⊗ U2) · (ψ1 ⊗ ψ2)
= (U1 · ψ1) ⊗ (U2 · ψ2)

(7)

The joint qubit state will have each of its constituent qubits
transformed by the corresponding gate: U1 will affect only
ψ1, and U2 will affect only ψ2. This provides a straightfor-
ward method for processing information in parallel, avoiding
one of the other critical limitations of serial-order heuristics.

Even more complex gates can be formed either by spec-
ifying them manually or by taking Kronecker products of
other gates, including specific transformations corresponding
to learned rules or template gates that implement more com-
mon logic operations. This could serve as a basis for spon-
taneous rule combination that is believed to occur as part of
learning in cognitive production systems (see e.g. Anderson,
1982).

More complex gates allow us to approach more complex
and task-specific problems as well. One issue with models
using only a few qubits is that they cannot map onto a sub-
stantial number of responses, meaning that the simple gates
we have examined so far cannot produce more continuous
responses like confidence. However, larger gates could im-
plement cue-controlled unitary operations such as random
walks, allowing for transformations that unfold over time and

over a large number or continuous states. Later, we also re-
view how this approach could provide a means for model-
ing other processes like evidence accumulation and heuris-
tics like tallying and weighted additive rules.

One final note of interest on unitary operators is that they
all meet the condition U†U = UU† = I where I is the iden-
tity operation and U† is the complex conjugate transpose of
U. This makes unitary transformations inherently reversible
– any operator can be undone by simply applying its com-
plex conjugate transpose to its output. Note, however, that
prior states cannot be reverse-computed using this approach
once they are measured, as measurement alters the cognitive
state from the one obtained immediately after cue processing.
The particular implications of reversibility for cue-based de-
cisions are not yet clear, but reversible gates do provide the
basis for constructing production systems that can accom-
plish backward induction tasks (Anderson, 1982; Anderson
et al., 1984; Tarrataca & Wichert, 2012).

Uncertainty and entanglement. So far we have exam-
ined the effects of definite state qubits on the transformations,
but what if one or more of the qubits is in an indefinite or
uncertain state? First, consider the effect of uncertain cues
on rule-based processing. Suppose that we have one cue that
indicates that a disease is present if true, and not present if
false. This cue serves as the first qubit, and our beliefs about
the presence of the disease are indicated by the second qubit
B. Before we have any information, we are in state |0〉, be-
lieving that the disease is not present. Let us also assume
that we have some uncertainty regarding the cue value C –
this could occur if the evidence is inconclusive, if the cue is
inaccessible, if we have insufficient data to fully diagnose the
cue value, or if we want to represent it as a continuous value.
In this case, we represent C as a superposition of |0〉 and |1〉,
C = c0|0〉 + c0|1〉 = [c0; c1], with c0, c1 , 0.

In order to apply our unitary operator, we compute the
initial state across qubits, CB = c0|00〉 + c1|10〉. Note that
B = |0〉, reflecting our initial belief that the disease is not
present. Because the rule is an if-then rule, we use a CNOT
gate UCN so that if some control condition is satisfied (pres-
ence of cue) then a unitary operator is applied to some target
(belief states are changed). More formally, the initial state
CB is transformed yielding a revised state, CB′ = UCN(CB).
The revised state is CB′ = c0|00〉+c1|11〉. Note that when we
dissect this state, the probability of measurements on the cue
have not changed, Pr(C = 0) = |c0|

2 and Pr(C = 1) = |c1|
2.

But the probability of measuring our beliefs about the crite-
rion has changed to match the probability of the cue being
measured, so that Pr(B′ = 0) = |c0|

2 and Pr(B′ = 1) = |c1|
2.

In effect, the uncertainty about the cue has been trans-
formed into uncertainty about whether the disease is present.
This means that the probability of making a particular deci-
sion or response is directly affected by our representation of
uncertainty in the information we are using.
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Furthermore, not only are measurements of our belief
about the criterion now stochastic, but the cue and our beliefs
are now entangled, so that observing the perceived value of
the cue will affect our beliefs and observing our beliefs will
affect the perceived value of the cue. For example, if we were
to measure the cue by projecting the state onto |10〉 + |11〉
(with probability |c1|

2), a subsequent measurement of our be-
liefs would be guaranteed to result in a positive answer be-
cause the two qubits cannot be in states |01〉 or |00〉. How-
ever, if we were to measure our beliefs first, there would be
a probability |c1|

2 < 1 that we would obtain a positive mea-
surement of “disease present.”

This has a particularly interesting consequence: once a
cue belief and criterion belief are entangled, reducing uncer-
tainty about the criterion value also reduces uncertainty about
the cue value. This means that feedback about a criterion di-
rectly affects cue beliefs. This is precisely the mechanism
that is assumed to generate the hindsight bias in heuristic
models of the hindsight bias (Hertwig et al., 1997; Hoffrage
et al., 2000). We revisit this point later when discussing em-
pirical evidence for quantum heuristics.

Application to heuristics

So far, we have illustrated some of the important elements
of the quantum framework. These are used to compose quan-
tum models of all sorts, but we are most interested in quan-
tum logic constructions of fast and frugal heuristics. Here,
we present quantum versions of the recognition heuristic
and the take-the-best heuristic as well as discuss how cue-
criterion belief entanglement can lead to a hindsight bias.
The formal structure of the recognition heuristic and take-
the-best models can be found in Appendix A and Appendix
B, respectively.

In the most simple case, quantum logic can simply be
used to reconstruct the classical Boolean structure of exist-
ing heuristics. In this case, one would set all qubits for be-
liefs and cue values to one of the definite states, |1〉 or |0〉. For
instance, one could obtain the same choice behavior from our
implementation of take-the-best as other classical implemen-
tations of take-the-best by by eliminating uncertainty about
cues and beliefs by setting all cues and beliefs to |0〉 or |1〉.

One consequence of this is that quantum logic heuristics
must by definition be able to perform at least as well as clas-
sical logic heuristics – the former can mimic behavior of the
latter. However, by using uncertainty and different sets of
processing rules (U-gates), quantum logic heuristics should
be able to outperform the accuracy of classical logic ones. In
this way, the performance of typical classical logic heuristics
serves as a sort of lower bound on the maximum potential
of quantum logic heuristics. We provide an example of how
incorporating uncertainty into the structure of the heuristic
can improve accuracy at the end of the next section on the
recognition heuristic.

It is important to note that the improved performance con-
ferred by quantum logic heuristics does not necessarily make
them better descriptive models of behavior, which is the pri-
mary goal of our integration. However, selection pressures
on both our evolved and learned strategies should push them
toward more successful ones, suggesting that the higher-
performance quantum logic heuristics would likely be used
if they can be developed. Furthermore, if a person out-
performs a classical logic heuristic in terms of their choice
accuracy, this does not necessarily imply that heuristics are
unable to account for that person’s behavior. Instead, the ad-
ditional accuracy conferred by modeling the person’s choice
behavior using a quantum logic heuristic (as opposed to a
classical one) could explain the gap in performance in such
cases, allowing the heuristic to be more descriptively accu-
rate by virtue of its improved performance.

Recognition heuristic

We can reconstruct the recognition heuristic discussed
in previous sections using quantum logic gates and qubits.
A more formal description of the model with the involved
mathematics is contained in Appendix A; here we provide
a simpler walk-through of how the quantum logic recogni-
tion heuristic functions. Recall that the recognition heuris-
tic strategy is used for binary choice, where decision-makers
check if they recognize a pair of alternatives, and choose one
alternative if it is recognized and the other is not.

Suppose a person is deciding which of two cities has a
larger population, Bakersfield (CA) or Atlanta (GA), based
on which of the two cities they recognize. Using the quantum
logic framework, we can represent a person’s initial beliefs
about the size of the cities as qubits B1 for Atlanta and B2
for Bakersfield. Then we can set their recognition cue values
of each city as qubits C1 for recognizing Atlanta and C2 for
recognizing Bakersfield.

We can model a person’s initial beliefs to be unbiased re-
garding which city is larger by setting B1 and B2 to |0〉 (i.e.
believe neither city is larger before assessing recognition).
Of course, recognition is likely to be quickly computed and
used in this problem, but before doing so a person has no
information on the cities and it is therefore reasonable for
them to have no biases to respond one way or another.

Next, we must set some values for the recognition cues.
In principle, these values would be informed via theories of
recognition memory using perhaps ACT-R (Anderson et al.,
1998b), MINERVA-DM (Dougherty et al., 1999), or some
other theory to predict a familiarity signal. However, for our
purposes, we leave this back-end specification open. Sup-
pose that a person definitely recognizes Atlanta, so recogni-
tion is in definite state |1〉, C1 = [0; 1]. By contrast, sup-
pose they are uncertain about whether they have seen Bak-
ersfield somewhere before, so recognition is low at C2 =

[
√

(.8);
√

(.2)]. If they are asked if they recognize Bakers-
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field, there is a 20% chance of a positive response and 80%
chance of a negative one (weaker or stricter recognition cri-
teria could adjust the bases used to evaluate the statement “I
recognize Bakersfield” and systematically affect these prob-
abilities).

This recognition information needs to be processed in or-
der to change the person’s beliefs. To do so, we pair the cue
with criterion beliefs (C1 with B1 and C2 with B2) to obtain
two qubit pairs, C1B1 and C2B2. These joint qubit states de-
scribe a person’s state in terms of 4 possible combinations,
recognize / not recognize × believe larger / smaller. These
joint qubits are paired with one another by taking the Kro-
necker product of the two constituent qubits.

Each of these joint qubit states needs to be transformed
so that a person’s uncertainty about recognition informs their
uncertainty about the criterion. To do so, the cues are then
used to update the person’s beliefs using the controlled U-
gate UCN that we described above. This transformation takes
the uncertainty in the cue values C1 and C2 and transfers it
onto the beliefs B′1 and B′2. The revised joint qubit states
C1B′1 and C2B′2 are computed by multiplying the unitary ma-
trix by the combined cue-belief states.

C1B′1 = UCN(C1B1) (8)
C2B′2 = UCN(C2B2) (9)

The resulting states C1B′1 and C2B′2 each describe a super-
position over beliefs about both the cue and criterion. For
example, C1B′2 will be [

√
(.8); 0; 0;

√
(.2)], yielding a 20%

probability of responding that Bakersfield is recognized and
large in population (|11〉), and a 80% chance of responding
that Bakersfield is not recognized and small in population
(|00〉). Interestingly, according to this model, there is no
chance of responding that the city is recognized but small
or not recognized but large based purely on recognition as a
cue.

Once a person’s final beliefs are computed, they can make
their final decision between Atlanta and Bakersfield. To do
so, we need to evaluate the person’s beliefs about the city
sizes, B′1 and B′2. If B′1 is evaluated as |1〉 (100% chance with
our example values) and B′2 is evaluated as |0〉 (80% chance
in our example), the decision maker will select Atlanta as the
larger city. Conversely, if B′1 is evaluated as |0〉 (0% chance)
and B′2 is evaluated as |1〉 (20% chance), Bakersfield is se-
lected as the larger city. In all other cases, recognition will
be insufficient to decide between the two because the deci-
sion maker’s beliefs about the two cities are measured to be
the same.

If a decision-maker still needs to decide, they may choose
randomly between the cities. In this case, they could invoke
the Hadamard gate shown in Figure 4. To do so, they would
simply feed one qubit in (e.g. B′′1 , the measured state ob-
tained from B′1) and measure the revised state that comes out

of the Hadamard gate. If the revised state is measured as
|1〉, they choose Atlanta (50% chance), and if it is measured
as |0〉, they choose Bakersfield. In our example, the overall
choice proportions are 90% choosing Atlanta (80% chance
of choosing it based on recognition + 20% × 50% chance of
choosing it randomly) and 10% choosing Bakersfield (20%
× 50% chance of choosing it randomly).

Note that the final decision can be made by computing
a joint state from the decision maker’s final beliefs, B′1B′2,
and measuring both beliefs simultaneously. This joint state
represents their combined beliefs about the two cities, and
contains all of the information needed to make a decision.
For example, they choose Atlanta if the joint state is |10〉,
Bakersfield if the joint state is |01〉, and randomly (by feed-
ing their beliefs through a Hadamard gate) if the joint state is
|00〉 or |11〉.

Adding the use of uncertain cues also allows for poten-
tially greater performance on this task as well. For exam-
ple, we could make a reasonable assumption that larger cities
have a tendency to have uncertainty leaning in the direc-
tion of positive recognition, whereas smaller cities may have
a tendency to lean toward negative recognition. Because
both beliefs are uncertain, a classical recognition heuristic
will force them to bypass this cue and choose randomly be-
tween cities. However, if uncertainty can vary along a spec-
trum and the recognition qubit value is correlated with the
criterion value, even uncertain recognition can be useful.
For example, suppose a person is uncertain about whether
they recognize both Atlanta and Bakersfield in our exam-
ple above: Atlanta recognition qubit [

√
.9;
√
.1] is compared

against Bakersfield qubit [
√
.8;
√
.2]. If the quantum recog-

nition strategy is used, it will result in a correct decision
(18%|01〉 + 50% · 72%|11〉 + 50% · 2%|00〉) = 55% of the
time, as opposed to the 50% one would obtain by bypassing
these uncertain cues and simply guessing.

Heuristics can therefore reap substantial benefits simply
by incorporating uncertainty into their structure. However,
the influence of different cues can also be moderated by us-
ing different logic transformations – for example, less useful
cues could apply Uθ transformations that rotate beliefs to-
ward the criterion value only partially. This would allow the
decision strategy to incorporate the validity or reliability of
different cues into their choice probabilities, guarding against
inferences made using poor information.

Take-the-best heuristic

Just as with the classical implementation of take-the-best,
the quantum implementation of take-the-best can be seen
as a generalization of the implementation of the recognition
heuristic. To introduce the model, imagine again that a per-
son is trying to decide whether Atlanta (A) or Bakersfield
(B) has a larger population. For simplicity, let us assume
that they recognize both cities and can recall some informa-
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tion about them, so instead of relying on recognition they are
using a take-the-best strategy to prioritize and examine cues
(though of course recognition could be incorporated formally
as a prior step or integrated as simply another cue in a heuris-
tic). A diagram of an implementation of take-the-best with
3 cues in the hierarchy is shown in Figure 5 (excluding the
recognition cue as an initial step).

The three cues that the person uses are the presence of a
league baseball team in the city, the presence of a university
in the city, and whether there is a subway system in the city.
Note that the cues are still selected and ordered on the ba-
sis of validity (though information or success is potentially
a better alternative, see Hilbig, 2010; Newell et al., 2004),
so the quantum logic implementation is subject to all of the
same benefits and drawbacks of stratifying cues in this way.

We can set the initial beliefs so that prior to considering
any information, a person does not believe either city to be
larger in population, B1 = B2 = [1; 0]. Suppose that they are
unsure but likely to respond yes if asked whether Bakersfield
has a baseball team, C1,1 = [

√
.2;
√
.8] (in reality, Bakers-

field has a minor league team) but they know that Atlanta
has a major league team, C2,1 = [0; 1]. When these cue val-
ues are paired with their respective beliefs (C1,1 with B1 and
C2,1 with B2) and passed through the CNOT gate U2

CN , the
uncertainty in the cue values is transformed into uncertainty
in beliefs, so that B′1 = [

√
.2;
√
.8] and B′2 = [0; 1].

At this point, a person’s beliefs are measured using the
measurement projector(s) M. The measurements can result
in one alternative being favored over the other (|01〉 or |10〉)
or a person’s beliefs can be evaluated as the same for both
alternatives (a tie, |00〉 or |11〉). Even if the unresolved be-
liefs about the two alternatives (superposition states) are not
the same, there is still the possibility that they will be equal
when measured. In our example, there is a 20% chance that
they will say that they believe Atlanta is larger (and that Bak-
ersfield does not have a professional baseball team), a 0%
chance that they will say Bakersfield is larger, and an 80%
chance that they do not resolve the decision at this stage as
they believe both cities are large because they have baseball
teams.

After the measurements, the belief states are projected
back onto |0〉 and the person continues onto the next cues.
Suppose that they know that both cities have a university –
processing cues C1,2 and C2,2 (both equal to |1〉) will not re-
sult in any decision when they are used to change the person’s
beliefs.

In contrast to the other cues, the decision-maker’s be-
liefs about the presence or absence of a subway system in
the two cities may be largely uncertain but doubtful, so that
they are unlikely to say that Atlanta has a subway system
(C2,3 = [

√
.8;
√
.2]) and slightly more likely to say that Bak-

ersfield has a subway system (C1,3 = [
√
.7;
√
.3]). When

the uncertainty from these cues is transformed into uncer-

tainty in beliefs about the sizes of the city, a person will have
a 14% chance of selecting Atlanta as having a larger pop-
ulation (20% chance of saying Atlanta has a subway times
70% chance of saying Bakersfield does not), a 24% chance
of selecting Bakersfield as having a larger population (30%
chance of saying Bakersfield has a subway and Atlanta does
not), and a 62% chance of selecting neither (20% times 30%
chance of saying both have a subway plus 70% times 80%
chance of saying neither has a subway).

Finally, a person who has still not chosen an alternative
proceeds to the Hadamard gate, which allows them to ran-
domly choose between Atlanta and Bakersfield (50% chance
each). Final choice proportions can be calculated by adding
the probabilities of choosing Atlanta or Bakersfield across
the different steps of the heuristic. In our example, they will
choose Atlanta as the larger city 61.5% of the time and Bak-
ersfield as the larger city 38.5% of the time. The formulas
for calculating the choice proportions are provided on the
bottom-right of Figure 5). Of course, this is merely an exam-
ple. These choice proportions would change depending the
cues used (e.g. if recognition was not 100%) and the degree
of uncertainty associated with each one.

The formal construction of the logic gates and cue-belief
combinations is provided in Appendix B. We have also made
Matlab code available that carries out the computations for
this example, available on the Open Science Framework at
osf.io/yph97. It is useful to note again that the quantum
implementation of the take-the-best heuristic seamlessly in-
tegrates stochastic behavior into the rule, demonstrating that
the deterministic nature of previous implementations of the
take-the-best are not necessarily a property of the heuristic
itself, but of the information processing theory in which the
heuristic is grounded. It is also useful to highlight that past
implementations of take-the-best or similar rules have strug-
gled with how to deal with uncertain or unknown cue val-
ues. Sometimes these unknown cue values were treated as
missing (see Figure 3 in Gigerenzer et al., 1991) or treated
as equivalent to a non-occurrence (see Figure 3 in Gigeren-
zer & Goldstein, 1996). Instead of needing these ad hoc as-
sumptions, as we have shown, quantum information theory
handles uncertainty in cue values with its first principles.

Parallel take-the-best and compensatory strategies

Although the serial structure of heuristics is often an ad-
vantage (as some information can be ignored), it can at times
be inefficient. For example, when high-validity cues are in-
frequently available, they still must be inspected in order to
get to diagnostic cues. In a related vein, it has been fre-
quently found that gaining substantial expertise on a partic-
ular task tends to move strategies from a cue by cue method
of processing information to a parallel or holistic processing
pattern (Ackerman, 1988; Dreyfus, 2004). As such, it should
be possible within our information processing framework to
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Figure 5. Simplified circuit representation of a 3-cue, 2-alternative quantum logic version of take-the-best. Mathematical
construction of cues and belief representation, information processing, and measurement matrices as well as a more complete
mathematical form of this diagram are presented in in the Appendix.

move from a serial to a parallel method of processing cues
(similar to how it is described in ACT; Anderson, 1982).

As we saw with cues and beliefs and the compound U2
CN

gates, it is straightforward in the quantum framework to com-
bine cues and processing gates together into a single state and
unitary transformation. This allows us to construct parallel
versions of take-the-best as well as implement compensatory
heuristics like linear or additive strategies (Hogarth & Kare-
laia, 2007). An example of a parallel implementation of a
heuristic is shown in Figure 6. Instead of feeding in cue and
belief qubits in sets of 4, all 12 are fed into the processing
gate U6

CN at the same time. This allows for all cues to affect
beliefs simultaneously in parallel.

Figure 6. Simplified circuit representation of a parallel quan-
tum logic heuristic. Cue (Ci, j) and criterion (Bi, j) beliefs are
fed into the information processing gate U6

CN and then mea-
sured with the operator(s) M, yielding choice frequencies x
and y.)

However, this has the drawback that the measurement op-
erator M becomes more complex. In fact, different mea-

surement operators can implement different heuristics. For
example, we can implement serial measurements identical
to those presented in the serial implementation of take-the-
best, measuring first beliefs affected by the first cue (B1,1 and
B2,1) followed by the second and third. This would execute
take-the-best but save time in terms of serial cue processing,
though measurement would require the same operations as
before.

Alternatively, we could measure all beliefs at the
same time. For example, one could measure all cases
where more beliefs favor option A than option B (e.g.
B′1,1B′2,1B′1,2B′2,2B′1,3B′2,3 = |101011〉, |101010〉, etc.) or more
favor option B than option A (e.g. B′1,1B′2,1B′1,2B′2,2B′1,3B′2,3 =

|010111〉, |010101〉, etc.) – this would implement the tally-
ing heuristic. One may want to include a Hadamard gate at
the end so a person would choose randomly in cases where
measured beliefs in the number of cues favoring A and B are
tied.

Other compensatory heuristics could be implemented in a
similar way. There are a large number of potential strategies
that could be created by adjusting the processing or mea-
surement operators, so we do not go into too many here.
Linear weighted additive heuristics could substitute UCθ for
UCN , and adjust θ for the various decision weights. Or one
could adjust the measurement operator to check for domi-
nance conditions (where 1+ beliefs favor option A and none
favor B) before using other rules. Either one of these could
be implemented in the same parallel way, and rules could be
easily adjusted by modifications to the processing and mea-
surement matrices.

Similarly, different measurement operators could examine
combinations of cues simultaneously – for example, it could
project onto qubits describing beliefs influenced by cues 1
and 3. This allows for compound beliefs or cues to be used
in the decision process, as proposed by Garcia-Retamero et
al. (2007).

Just as individual cues can control partial rotations, they



18 KVAM

can also control other unitary operations. For example, an in-
dividual cue could control a random walk operation, chang-
ing how beliefs are distributed across multiple levels of per-
ceived evidence. This would allow for quantum logic models
to predict cue-based confidence judgments similar to the the
confidence models of Kvam et al. (2015) or Wang & Buse-
meyer (2016a).

Quantum logic heuristic predictions

Across all of the heuristics we have examined, there are a
number of running themes that arise. Because of the struc-
ture of quantum logic that we use to implement heuristics,
we obtain uncertainty in beliefs, partial transformations re-
sulting in probabilistic decisions, uncertainty in cue values,
parallel cue processing, and cue-belief entanglement. These
reflect the 5 new predictions of quantum logic heuristics:

• Decision-making (measurement) can be made stochas-
tic due to the superposition representation of beliefs.
For a given set of cues and initial beliefs, unlike in the
classical framework, a single set response is not always
guaranteed.

• Cues need not be entirely convincing. Depending on
the validity or subjective credibility of a cue, it can ap-
ply a partial transformation, shifting a person’s beliefs
toward but not fully into the criterion state it indicates.

• Cue values can be indeterminate, either by being in-
accessible, incomplete, or continuous to a decision-
maker. This uncertainty is used to form beliefs rather
than ignored or assumed away.

• Unitary gates are combined to operate on multiple
qubits in parallel using a single transformation, sug-
gesting that switching from serial to parallel process-
ing of cues in decision strategies should be a rapid tran-
sition. In addition, parallel cue processing allows for
more flexible rules to be applied via different measure-
ment operators, including both dominance-based con-
ditions and cue combinations.

• Once a cue is processed, it may be come entangled
with a person’s beliefs. This results in order effects,
where evaluating a cue value affects subsequent be-
liefs about a criterion value, and evaluating beliefs can
reduce uncertainty about a cue value. Therefore, re-
sponses after processing an uncertain cue depend on
the order of subsequent measurements.

Discussion

By integrating the quantum logic construction of cues, be-
liefs, and information processing with simple heuristic rules
for utilizing information, we gain a number of theoretical

and empirical advantages over existing approaches describ-
ing human behavior in cue-based decisions. In addition, it
allows us to make a number of new, testable predictions that
provide avenues for future research. In the following sec-
tions, we review some of these insights, outline points of di-
vergence between classical and quantum logic approaches to
heuristics, and suggest directions for further investigations.

Benefits of heuristics for quantum logic

The benefits of using simple heuristics are by now well-
established (see e.g. Gigerenzer & Todd, 1999; Hertwig et
al., 2013; Todd et al., 2012), and a quantum logic formula-
tion of them preserves many of these advantages. This al-
lows quantum logic heuristics to inherit many of the present
benefits of fast and frugal heuristics. Though not an entirely
exhaustive list, we review some of the most important ones
here.

Structure and rules. Quantum logic as a framework
is indifferent to how particular strategies are put together –
alone, it does not offer an explanation of behavior. It simply
provides a set of representations and computations, building
blocks with which we can construct strategies. Therefore,
quantum logic relies on established heuristic strategies to
guide construction and provide context and theoretical power
to its implementation.

As we hope to have shown, the building blocks of heuris-
tics – information search, stopping rules, and a decision rule
(Gigerenzer, 2004) – can be mirrored almost exactly in the
quantum logic constructions of heuristics. For example, the
serial version of quantum take-the-best (Figure 5) gathers
information cue-by-cue beginning with the highest validity,
stops when a measurement obtains a discriminating decision
state, and results in selection of the alternative that state fa-
vors. These three rules are still essential components of con-
structing a quantum logic heuristic, but must navigate the
slightly different cue and belief representations and informa-
tion processing circuits.

There is no default structure to measurement operators
either, and as we saw in the parallel heuristic implementa-
tion, different operators can result in the implementation of
many potential decision strategies. Interestingly, the delib-
erate use of measurement operators offers a new way to ex-
plicitly model the decision rule. Because the cognitive sys-
tem is always in a definite state in the classical approach,
the decision rule is often an after-thought. In the framework
of quantum logic, decision making is actually a constructive
process where a cognitive state is created when a person’s
beliefs are measured, so the particular measurement (the ba-
sis in which the state is created) is particularly important. Of
course, quantum logic does not provide the heuristic strate-
gies by itself, only the means to implement and adjust the
heuristics.
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Simplicity. One of the greatest strengths of heuristics is
that they can deliberately ignore information in order to ob-
tain faster, more accurate, or more frugal outcomes. This
is passed on to the quantum logic implementations of these
same heuristics, though of course parallel cue processing
strategies sometimes may use unnecessary information as
with tallying or other compensatory heuristics.

This also allows quantum logic heuristics to avoid the cal-
culations necessary to compute the covariance matrix be-
tween all of the cues that are used. Instead, the heuris-
tics typically exploit statistical structures of the environment
such as valid cues like recognition (Goldstein & Gigerenzer,
2002), so-called non-compensatory cue structures (Gigeren-
zer, 2004; Martignon & Hoffrage, 2002), or via dominance
and cumulative dominance (Simsek & Buckmann, 2015).
These properties allow the heuristics to avoid the costly pro-
cess of setting and re-adjusting decision weights based on all
of the co-occurrences of available cues. And as the research
on fast and frugal heuristics shown, these restricted strategies
sometimes perform just as well or even outperform these de-
cision processes that do (Gigerenzer & Todd, 1999; Todd et
al., 2012).

Finally, deterministic heuristics actually provide a partic-
ular special case of their quantum logic implementation –
namely, one where only definite states are used and logic
gates are restricted to deterministic forms. In many cases,
this may make them more parsimonious descriptions of be-
havior by minimizing the number of free parameters that
have to be estimated in the model. Assuming particular
forms of representation and processing also simplifies the
task of the decision-maker, who does not have to worry about
their internal levels of uncertainty or about the strength of
transformations they apply to their beliefs (e.g. deciding on
different values of θ for the Uθ gate).

Ecologically adaptive. As we showed in previous sec-
tions, quantum logic can implement any strategy that is done
in classical logic. Therefore, we know that quantum logic
heuristics can achieve performance that is at least equal
to that of classical logic heuristics. As such, they inherit
a fairly high degree of base performance by implement-
ing the recognition heuristic, take-the-best, or other well-
documented strategies (Gigerenzer et al., 1991, 1999; Hoga-
rth & Karelaia, 2007; Pachur et al., 2011).

However, quantum logic versions of these heuristics could
potentially achieve even greater performance in some envi-
ronments. For example, if the uncertainty in the cue beliefs
reflects some true (or at least seemingly-probabilistic) un-
predictability of the environment, participants will actually
match the probabilities of their occurrence in their behav-
ior. Matching probabilities in the environment is actually
optimal in many environments, such as choosing a foraging
patch (Kennedy & Gray, 1993; Krebs, 1978), and this opti-
mal behavior would be generated by the heuristic structure

combined with its quantum logic implementation.
As we suggested before, quantum logic heuristics’ im-

proved performance may confer benefits in terms of the de-
scriptive accuracy of heuristic strategies. If people’s behav-
iors adapt to the uncertainty present in their environment,
then modeling heuristics using quantum logic components
may better reflect the improved strategies we develop by in-
corporating uncertainty. It also brings instances where peo-
ple out-perform classical heuristics back into consideration
as heuristic strategies, as the addition of quantum logic com-
ponents can potentially bridge the gap between the limits of
classical logic heuristics and observed choice behavior.

Benefits of quantum logic for heuristics

The benefits of modeling cognitive processing using
heuristic accounts and the benefits to decision-makers of us-
ing heuristics are already quite well-established (see for ex-
ample Gigerenzer et al., 1999). Here, we focus more on
how merging quantum logic with heuristics makes them dif-
fer from classical logic heuristics and what benefits doing so
confers.

Uncertain and continuous cues and beliefs. Even if
cues are certain, a person may apply a partial rotation like
Uθ to change their beliefs when a cue is not entirely convinc-
ing. In some cases, this will result in a person not reaching a
decision after considering a definite cue. So even if a cue is
diagnostic, a participant using a heuristic may not stop after
inspecting it and instead continue to consider other informa-
tion. In order to examine this, one would have to check trials
on which a cue that should not have been used (based on
the cue hierarchy in some non-compensatory decision strat-
egy) and see if this cue was unexpectedly correlated with
the final decision a participant made on those trials. This
is essentially the approach that was used to test the prior-
ity heuristic (see e.g. Fiedler, 2010) where later cues (i.e.,
the difference in worst-case probabilities or the best outcome
in this case) were shown to affect choice when according to
the classical interpretation of the priority heuristic it should
not have. Oddly, this behavior of quantum logic heuristics
suggests that instances of apparently compensatory behavior
may arise during the use of non-compensatory heuristics if
cue values are partially uncertain.

There is already evidence for a continuous underlying
structure to cues. For example, we reviewed recognition,
where setting a threshold on some continuous recognition
value in order to make it binary yields linear ROC func-
tions (e.g. ‘high-threshold’ models Malmberg, 2002). Em-
pirical data that suggest nonlinear ROCs would necessitate a
continuous underlying recognition value (Yonelinas & Parks,
2007), but many alternative proposals for linear ROCs (e.g.,
threshold models) also rely on a continuous underlying cue,
such as memory strength or familiarity (Bröder & Schütz,
2009). Such a representation is well-captured by continuous
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qubit values, much like the continuous values used in signal
detection theory.6 Which cues are continuous and to what
extent the continuous nature of cues is used when available
is an open question.

Parallel cue processing and combination. As we de-
scribed in previous sections, multiple cues and beliefs or
multiple processing gates can be easily combined with one
another in the quantum logic heuristics. They can then be
processed altogether, and different decision rules can be ap-
plied to the person’s revised beliefs. This can potentially re-
sult in a much faster decision process, as inspection of each
cue is not dependent on the diagnosticity of a cue higher in
the inspection hierarchy. In principle, quantum logic allows
for rapid rule combination and parallelization of sets of logic
gates.

Unfortunately, gathering evidence that cues are processed
in this way may be difficult. Serial and parallel processes
can be notoriously hard to discriminate, depending on the
structure of the proposed models (Townsend, 1971, 1990).
However, quantum logic would suggest that serial gates can
be created by combining them via a Kronecker product. This
leads to the empirical prediction that the transition from a
serial to a parallel procedure could be quite rapid rather than
occurring over gradual periods of time.

Although little work has been done to our knowledge on
how heuristic processes may change over time and with rep-
etition, some support for this prediction can be found in ex-
pertise literature. In several studies in this area, participants
seem to transition from periods of serial, declarative rules
when they are only familiar with the task to parallel, procedu-
ral rules when they have become very good at it (Ackerman,
1988; Dreyfus, 2004; Beilock & Carr, 2001). The periods
of transition are typically characterized by rapid increases
in processing speed or accuracy as well as spontaneous rule
combination. These rapid shifts are pervasive enough that
they have been used to demarcate different stages of ex-
pertise acquisition (Taatgen, 2005; Anderson, 1982), hinting
that rapid gate construction may be a reliable component of
learning to perform a task.

The parallel processing of cues also means that decision
rules can be applied by using different measurement oper-
ators after all information processing has completed. This
opens up new strategies, as a person could process all cues
at once and then check dominance conditions or use multiple
cues in combination with one another to trigger a choice one
way or the other (Garcia-Retamero et al., 2007).

Stochasticity. The switch from a strictly deterministic
to a stochastic system of cues and beliefs is perhaps the most
controversial feature of a quantum logic structure for heuris-
tics. In addition to making the system a bit more complex,
it also means that strategies must be graded in a different
manner. Rather than the rate of adherence to a strategy as a
marker of empirical accuracy, we must shift to a likelihood-

based method of model (strategy) evaluation. We note rea-
sons for this in Appendix C.

Although either change constitutes a substantial shift, they
are both in line with modern models of the decision-making
process. There is strong evidence that some stochastic ele-
ments are not only desirable but necessary in order to pro-
duce the choice proportions and distributions of response
times that we observe in empirical data (Townsend & Ashby,
1983) (see also Busemeyer & Bruza, 2012; Busemeyer &
Townsend, 1993; Hogarth, 1987; Simon, 1959).

However, it is also fair to say that models with determin-
istic elements can provide more parsimonious accounts in
many cases. This is commensurate with fixing parameters to
reduce flexibility – in a Bayesian sense, it would be equiva-
lent to restricting the priors on parameters of a (probabilistic)
model in order to improve its predictive accuracy in a partic-
ular environment. Sticking to a simpler deterministic model
is particularly desirable when there is little choice data for
estimating free parameters.

Many models of the decision-making process have been
built with adding stochasticity in mind, deliberately build-
ing in elements that make decisions probabilistic. Sev-
eral authors have incorporated probabilistic behavior into
heuristics, either as part of an evidence accumulation pro-
cess (Lee & Cummins, 2004), part of the evaluation pro-
cess (Rieskamp, 2008), or as random selection of different
heuristics (Rieskamp & Otto, 2006; Davis-Stober & Brown,
2011). However, these are post-hoc modifications to the the-
ory, which in a sense indicates that there may be something
wrong with purely deterministic models of cognition. To be
fair, the many potential sources of noise in behavior make it
difficult to tell if a particular underlying cognitive system is
behaving in a deterministic or stochastic way. It may well
be that cognitive processes are inherently deterministic and
that we have to build in some functions that produce error.
Without being able to identify a consistent source of the
largely probabilistic behavior that arises in cue-based deci-
sions, however, modeling variation in outcome as a function
of superposition is arguably more parsimonious and no less
likely than most other accounts.

Interestingly, evidence suggests that there are substantial
advantages to behaving unpredictably in a stochastic way.
For example, in game theoretic scenarios it is often benefi-
cial to adopt a mixed strategy, performing different behaviors
with some amount of randomness (Colman, 2003; Smith,
1974, 1982). Taken a step further, using explicitly quantum
strategies can improve a player’s expected payoffs in a vari-
ety of environments, even invading evolutionarily stable clas-
sical strategies (Eisert & Wilkens, 2000; Iqbal & Toor, 2001;
Meyer, 1999). Similar to mixed strategies, it may be adaptive
to scale the probability of different responses based on inputs

6In fact, quantum signal detection theory (Baldo, 2013) mimics
its behavior and would produce essentially the same results.
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or predicted outcomes, leading to behaviors like probability
matching (Bliss et al., 1995; Shanks et al., 2002; Thompson,
1933). Substantiating the predicted random behavior, there
appear to be mechanisms in the brain that generate proba-
bilistic behavior or choices (Tervo et al., 2014) much like a
Hadamard gate would implement.

Theory integration and conclusions

Each of the theories we have integrated here provides
some benefit to the other, but perhaps more interesting is that
putting them together raises new questions and new perspec-
tives on existing ideas. Two important ones are the predicted
effects of entanglement of cue and criterion beliefs, and the
incorporation of uncertainty into the structure of the cue pro-
cessing models.

Entanglement. The integration of quantum logic and
heuristics allows for the new possibility that cue and criterion
beliefs can become entangled during information processing.
Specifically, it suggests that if an indeterminate cue influ-
ences beliefs (via a U-gate operation), evaluation of the cue
should affect subsequent evaluation of beliefs and informa-
tion about the criterion should affect beliefs about the cues.
This results in two interesting effects: order effects of belief
measurements regarding cues and criteria, and effects of cri-
terion information on cue beliefs. The latter may underlie the
hindsight bias phenomenon.

To give a more concrete example of an order effect regard-
ing cue and criterion beliefs, consider the situation a person
is gauging whether to attend a movie based on whether they
recognize it. The decision-maker may be unsure of whether
they recognize a movie (to different extents), and so process-
ing this cue may make them unsure of whether they want to
attend the movie. However, if we force them to respond that
they do or do not recognize the movie, this should influence
the probability that they decide to see it or not. As a result, if
we contrast responses under two conditions – one where we
ask if they recognize it and then if they want to see it, and
another where we only ask if they want to see it – we should
obtain violations of the law of total probability (see Equation
4). Results of similar sequential-choice experiments suggest
that this may be the case (Kvam et al., 2015; Townsend et al.,
2000; Wang & Busemeyer, 2013; Wang et al., 2014; Wang
& Busemeyer, 2016b).

Cue-belief entanglement also results in an effect of crite-
rion information on cue beliefs. Getting information about
the criterion values results in a transformation or collapse of
an entangled cue-criterion state, changing a person’s beliefs
about the cue as well. This results in modified beliefs about
the value of the cues compared to when a person initially
processed the cue values. As a result, when a person revisits
their (revised) cue beliefs to calculate their confidence in the
criterion, this value may be greater than when they processed
the cue initially. As a result, retrospective confidence fol-

lowing criterion information can be higher than prospective
confidence before criterion information, creating a hindsight
bias.

This explanation of hindsight aligns closely to previ-
ous heuristic descriptions of the hindsight bias, such as the
Reconstruction After Feedback with Take-the-best [RAFT]
model (Hertwig et al., 1997; Hoffrage et al., 2000). This
model of the hindsight bias posits that after a decision is
made, feedback about the criterion value (reducing uncer-
tainty about criterion beliefs) leads to inferences about cue
values that were potentially uncertain at the time of a de-
cision (reducing uncertainty about cue beliefs). Formally,
a quantum logic model of take-the-best or the recognition
heuristic would say that collapsing the cue-criterion belief
state on a definite state of criterion beliefs increases a per-
son’s belief in the cue. This is precisely the effect of entan-
glement – changing criterion beliefs should affect cue beliefs
once they have been entangled together through a U-gate.

Retrospective confidence, in turn, would be determined
by the revised cue beliefs, leading to higher confidence after
receiving feedback – a hindsight bias. Therefore, a hind-
sight bias falls readily out of the quantum logic heuristics
we described in the previous section. Although we have not
discussed it in detail here, there are multiple ways to model
confidence in the quantum logic framework. We could do so
by using the revised cue beliefs to directly yield confidence
(as done in Trueblood & Busemeyer, 2011) or to trigger a
separate confidence-generating operation (as in the random
walk model proposed by Kvam et al., 2015). We should
emphasize that this prediction of a hindsight bias is not the
result of adding auxiliary assumptions to the process model
like cognitive reconstruction or motivated self-presentation
to the model (Hawkins & Hastie, 1990). Instead, the pre-
diction arises from the first principles of the quantum logic
model of heuristics developed here, which raises interesting
questions as to the hindsight bias’ status as a bias at all.

Uncertainty and entropy

Markov and quantum models make a distinction between
mixed and superposition states. Mixed states give proba-
bilities of observing different results (decisions, confidence
judgments), but these probabilities are predicated on the un-
certainty of the observer or modeler. On the other hand, su-
perposition states represent measurement uncertainty, which
makes both the decision-maker and any observers uncertain
about a person’s actual state. This distinction is particularly
interesting because it illustrates how different types of uncer-
tainty correspond to distinctions made in work on heuristics
between types uncertainty.

In a classical framework, we might discriminate between
epistemic uncertainty – an inability to predict future out-
comes primarily due to a lack of knowledge – and aleatory
uncertainty – an inherent inability to predict future outcomes
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due to their unpredictable nature. For example, epistemic
uncertainty might describe our uncertainty about the official
census population of a city in terms of our lack of knowl-
edge, while aleatory uncertainty might describe our essen-
tially irreducible uncertainty about the exact number of peo-
ple within the city’s boundaries at a particular time.

The mixed states described in classical probability prin-
cipally correspond to reducible epistemic uncertainty, where
a series of bits is only unpredictable if we lack knowledge
about whether each entry is a 0 or a 1. Instead, we might only
be able to supply some probability that an entry will be 0 or 1.
The closer this probability is to 0 or 1, the more predictable
the string and its behavior (e.g. how it interacts with logic
gates) will be. Formally, the amount of unpredictability of a
classical state is referred to as the Shannon entropy (Shannon
& Weaver, 1949), and it can be quantified by a number of dif-
ferent metrics. We reduce the entropy of a classical system
by knowing more about the state, to the point where we can
completely predict the properties and behavior of a bit string
if we know what each bit is (0 entropy). Conceptually, then,
Shannon entropy embodies the idea of epistemic uncertainty,
where our inability to predict the outcomes of events or states
can be reduced by knowledge of the system in question (As-
cough et al., 2008; Fontana & Gerrard, 2004).

Aleatory uncertainty supposedly arises from inherently
stochastic properties of the environment. In a truly deter-
ministic world, we could in theory predict anything given
enough knowledge of the current state of the world. In this
sense, aleatory uncertainty may not truly exist in a classical
deterministic system. However, integrating heuristics with
the quantum framework introduces a parallel form of uncer-
tainty called ontic uncertainty – uncertainty regarding the
true existence of a particular state – which arises from the
stochastic interactions between states and measurements of
the world. In this framework, ontic uncertainty serves as the
principally irreducible type of uncertainty or unpredictabil-
ity, and therefore may be the true source of what we more
commonly refer to as aleatory uncertainty.

Formally, a quantum superposition state such as a qubit
possesses unpredictability in the form of von Neumann en-
tropy (von Neumann, 1955). In this case, we can know ev-
erything about a state – for example, ψ = [

√
.5,
√
.5] – but

the state is still entropic in that we cannot perfectly predict
the outcome of a measurement. Uncertainty about a qubit
string cannot be completely reduced unless every qubit has
collapsed on |0〉 or |1〉, in which case the von Neumann en-
tropy is 0. Therefore, there can be uncertainty about what
state a qubit is in as well as uncertainty about what measure-
ments we will obtain even if we know the state (Bengtsson
& Zyczkowski, 2006). Von Neumann entropy therefore pro-
vides a ‘true’ source of unpredictability (ontic uncertainty)
that may underlie what we label aleatory uncertainty (As-
cough et al., 2008; Fontana & Gerrard, 2004).

While it may seem inconvenient for a person in a von
Neumann-entropic state to be unable to predict their own
behavior (assuming they know their own state), this is ad-
vantageous in that it is a source of uncertainty that cannot be
reduced by other people either. As we mentioned earlier, this
is particularly desirable because it prevents an agent from
being exploited when opponents have a great deal of infor-
mation about the agent’s strategies (Colman, 2003; Smith,
1974, 1982).

Conclusions

In this paper, we have examined in detail how quantum
logic and heuristics might inform one another. Heuristics
provide rules and structure for constructing simple strategies
to make decisions based on cues, and quantum logic provides
a set of representations and computations that lend empirical
accuracy and flexibility to the strategies that are composed.

As a result, both quantum framework and heuristic rules
are enhanced by integrating them into quantum logic heuris-
tic models. But perhaps more importantly, putting them to-
gether in this way raises new questions. It opens up the possi-
bility of cue-criterion belief entanglement, provides connec-
tions between uncertainty in judgment and decision-making
and entropy in formal information theory, posits mechanisms
for random choice and rule combination, and provides a po-
tential bridge between high-level cognitive theory and lower-
level neural implementation.

Examining and replacing the formal structures that under-
lie cue processing models can generate insights that might
otherwise be taken for granted. We hope this effort on inte-
grating multiple approaches – covering heuristics, informa-
tion theory, and classical and quantum logic – has raised new
questions, illustrated the importance of critically examining
the assumptions that we make when modeling, and offered
promising alternative directions for exploring models of in-
formation processing more generally.

Appendix A: Formal implementation of quantum logic
recognition heuristic

We suppose that beliefs about a criterion (e.g. which of
two cities is larger?) are represented by 2 qubits B1 and B2,
and the recognition cue values are also represented by qubits
C1 and C2. Therefore, the initial state CB of the system can
be described as an outer product of these four qubits:

CB = (C1 ⊗ B1) ⊗ (C2 ⊗ B2) (10)

If we want to flip a criterion belief qubit if a cue is present
(city is recognized), then we use the CNOT gate UCN shown
in Figure 4 on each of the qubits individually, combining the
gate to do so in parallel.

U2
CN = UCN ⊗ UCN (11)
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Then, we apply this gate to the initial 4-qubit state that
we obtained by combining the cue belief qubits and criterion
belief qubits.

CB′ = UCN,2(CB) (12)

In order to measure the revised beliefs, we must project
onto the corresponding belief states. There are 3 projectors
to construct: one for “choose Bakersfield,” one for “choose
Atlanta,” and another for “no choice / check another cue.”
Note that “choose city 1” projector P1 checks for instances
where the second and fourth qubits are evaluated as 1 and
0 respectively, “choose city 2” projector P2 covers instances
where the second and fourth are evaluated as 0 and 1, and the
remaining projector PN covers all other measurement out-
comes.

Choose city 1: P1 = |0100〉 + |0110〉 + |1100〉 + |1110〉
Choose city 2: P2 = |0001〉 + |0011〉 + |1001〉 + |1011〉

Choose neither: PN = |0000〉 + |0101〉 + |1000〉 + |0010〉
+|1101〉 + |0101〉 + |0111〉 + |1111〉

The probability of choosing city 1 is ||P1|C1B′1C2B′2〉||
2,

city 2 is ||P2|C1B′1C2B′2〉||
2, and continuing without a re-

sponse or choosing randomly is ||PN |C1B′1C2B′2〉||
2.

In the case that a person does not collapse on a left or right
response, the Hadamard gate H from Figure 4 can be applied
to any or all of the collapsed qubits in parallel.

This gate maps pure |0〉 or |1〉 states to an equal superposi-
tion of the two. When a state is measured after applying the
gate, it will randomly collapse with equal probability on one
of these basis states. In effect, it takes a definite set of beliefs
and maps them onto random responses, providing a mecha-
nism for generating random choices that is not present in the
classical framework. The Hadamard gate can be applied in
a parallel manner using a Kronecker product as in Equation
11.

Appendix B: Formal implementation of quantum logic
take-the-best

The diagram shown in Figure 5 is a largely simplified ver-
sion of how a quantum logic take-the-best is implemented.
Given initial beiefs B1 and B2 and cues C1,1 and C2,1, the
initial state that is fed into the first gate (U2

CN) is a specific
combination of the beliefs and cues, which we refer to as
CB1.

CB1 = (C1,1 ⊗ B1) ⊗ (C2,1 ⊗ B2) (13)

.
Because it is being applied to a pair of cue-belief states,

gate U2
CN is actually a pair of UCN gates combined via Kro-

necker product, U2
CN = UCN ⊗UCN . Note that the Kronecker

product is distinct from matrix multiplication – U2
CN is not

simply the square of UCN .
In order to process the cues, we simply multiply the uni-

tary matrix by the combined belief and cue state to obtain the
revised state CB′1 = U2

CNCB1.
The measurement M consists of 3 projectors: one to cal-

culate the probability of choosing Atlanta [MA], one to cal-
culate the probability of choosing Bakersfield [MB], and one
to calculate the probability of choosing neither and instead
continuing to the next gate [MN]. The projector MA measures
the probability amplitude along dimensions where a person
believes that city A is large and B is not (i.e. where B1 = 1
and B2 = 0). It therefore consists of a 16 × 16 matrix of
zeroes with ones along the diagonal in rows 5, 7, 13, and 15.
Conversely, the projector MB measures the probability am-
plitude along states where B1 = 0 and B2 = 1, and consists
of a 16× 16 matrix of zeroes with ones along the diagonal in
rows 2, 4, 10, and 12. Finally, MN projects onto states where
B1 = B2 and consists of a 16× 16 matrix of zeroes with ones
along the diagonal in rows 1, 3, 6, 8, 9, 11, 14, and 16.

The probability of each response is calculated by squaring
the length of the projections given by each of the measure-
ment operators.

Pr(choose A) = x1 = |MACB′1|
2 (14)

Pr(choose B) = y1 = |MBCB′1|
2 (15)

Pr(choose neither) = z1 = |MNCB′1|
2 (16)

People who choose A or B are finished, but those who do
not choose either have their belief states B1 and B2 projected
onto |0〉 and normalized to length 1 (so the probabilities of all
of the possible measurements again sum to 1), then continue
onto the next step of the heuristic. Their beliefs are paired
with a new set of cues to compute a combined state, they pro-
cess the cues using the same information processing matrix,
and the measurement operators are applied to the resulting
state.

Combined state CB2 = (C1,2 ⊗ B1) ⊗ (C2,2 ⊗ B2) (17)

Revised state CB′2 = U2
CNCB2 (18)

Pr(choose A) = x2 = |MACB′2|
2 (19)

Pr(choose B) = y2 = |MACB′2|
2 (20)

Pr(choose neither) = z2 = |MNCB′2|
2 (21)

This process is repeated until a choice alternative is se-
lected or until a person runs out of cues. In the case that they
run out of cues, a person chooses randomly. The random
state is generated using a Hadamard gate H:

H =
1
√

2

[
1 1
1 −1

]
(22)
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Multiplying H by any definite state B1 = |0〉 or B1 = |1〉
will result in state B1 = [

√
.5;
√
.5]. This state is measured

by projecting it onto |0〉 (choose B) or |1〉 (choose A) – the
probabilities of each response will be exactly 0.5.

Parallel heuristic

The U6
CN gate shown in Figure 6 is formed by taking the

Kronecker product of 6 UCN gates.

U6
CN = UCN ⊗ UCN ⊗ UCN ⊗ UCN ⊗ UCN ⊗ UCN (23)

The cue-belief state that is fed into it is formed by first
combining the criterion belief Bi, j with the corresponding cue
Ci, j. Then, all of the cue-criterion belief pairs are combined
together to form the overall cue-criterion belief state CB.

CB = (B1,1 ⊗C1,1) ⊗ (B2,1 ⊗C2,1) ⊗ (B1,2 ⊗C1,2) ⊗ ... (24)

As before, the revised state is computed by multiplying
the unitary operator by the cue-criterion belief state, CB′ =

U6
CN(CB). This revised state is then measured using some

set of measurement operators M defined by the decision rule
specified in a heuristic.

In essence, the U6
CN gate processes 6 cues at once – 3

corresponding to each alternative – and uses them to modify
each of 6 belief states about the criterion. This allows it to
process information from many sources all at the same time,
but the resulting beliefs (B′n) have to be measured in non-
trivial ways. The measurement operator therefore becomes
a particularly interesting point of variation in strategies, as
it suggests that the differences in behavior result not from
differences in information search, but from the decision rule
applied once all cues have been gathered and processed.

Appendix C: Justification for likelihood over
adherence-based model evaluation

As far as methods of model evaluation, adherence rates
provide a generally poor measure of model performance
compared to likelihood-based methods, as it can often over-
represent the true empirical accuracy of a model (Hilbig,
2010). The primary issue with adherence rates is that using
this metric presupposes a deterministic model of the world.
By using adherence, model performance is graded on its ca-
pacity to predict each data point individually rather that its
ability to describe the data-generating process. This winds
up essentially penalizing all stochastic models, and also runs
into problems when applied to grading mixtures of strategies
across or within participants.

For example, suppose we want to describe a machine that
produces 70% blue and 30% red objects. A deterministic
model that always predicts blue objects would have a 70%

adherence rate, while a model that predicts 70% blue ob-
jects would have a [70% * 70% (correctly predict blue) +

30% * 30% (correctly predict red) = ] 58% adherence rate if
it made probabilistic predictions or 70% adherence rate if it
made its maximum likelihood prediction on every new object
produced. However, we would never say that the determinis-
tic model is more descriptively accurate than the model that
represents the true stochastic structure of the machine.

Adherence rates have an additional downside when it
comes to mixture data as well. For example, it can run into
trouble when different participants are using different strate-
gies and the group-level data is analyzed. Suppose that cue 1
is more valid than cue 2, but Participant 1 prefers to use only
cue 1 and Participant 2 prefers to use only cue 2 to make
their decisions. If cue 1 was available to Participant 1 but not
Participant 2, their group-level choice behavior would cor-
respond perfectly to take-the-best even though neither par-
ticipant was using this strategy. Conversely, if participant
2 While this is a simple example, it illustrates the concep-
tual challenges of using adherence rates when trying to grade
models in the presence of a mixture of strategies. In essence,
the best-fitting model to a set of aggregate data may So not
only do adherence rates falsely penalize stochastic models,
they cannot really be used except to predict homogeneous-
strategy data either.

On the other hand, maximum likelihood methods have
been both highly successful and widely used as methods of
parameter fitting and model comparison in statistics and psy-
chology (Myung, 2003). Potentially more appropriate meth-
ods such as Bayesian estimation also incorporate likelihood
functions, even if they are not simply maximizing them.

Returning to our 70% blue, 30& red machine and models,
we would say that the likelihood of the 70% blue, 30% red
machine is L = Pr(blue)(#blue) · Pr(red)(#red). The maximum
likelihood model, supposing that there are 700000 blue ob-
jects and 300000 red objects produced, would be the model
positing 70% blue and 30% red objects, while the determin-
istic model would have probability zero (or closer to zero, if
we assume some error that is not equal to 30%). This is a
much more valid conclusion. By using the likelihood metric,
we are able to estimate the best data-generating model, which
is not possible using only adherence rates.

Of course, readers who firmly believe that choice out-
comes are all deterministic and predictable are certainly free
to use adherence rates as their favored metric for modeling
homogeneous data. But if there is any possibility that this
is not the case, then likelihood-based methods should be fa-
vored.
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