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a b s t r a c t

Multiple-choice and continuous-response tasks pose a number of challenges for models of the decision
process, from empirical challenges like context effects to computational demands imposed by choice
sets with a large number of outcomes. This paper develops a general framework for constructing
models of the cognitive processes underlying both inferential and preferential choice among any
arbitrarily large number of alternatives. This geometric approach represents the alternatives in a choice
set along with a decision maker’s beliefs or preferences in a ‘‘decision space,’’ simultaneously capturing
the support for different alternatives along with the similarity relations between the alternatives in
the choice set. Support for the alternatives (represented as vectors) shifts over time according to the
dynamics of the belief / preference state (represented as a point) until a stopping rule is met (state
crosses a hyperplane) and the corresponding selection is made. This paper presents stopping rules that
guarantee optimality in multi-alternative inferential choice, minimizing response time for a desired
level of accuracy, as well as methods for constructing the decision space, which can result in context
effects when applied to preferential choice.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

From laboratory tasks like orientation judgments to real-world
ones like price setting or spatial navigation, humans frequently
make selections among large sets of potential responses. How-
ever, decision models have traditionally focused on the binary
case where a decision-maker has only two or three alterna-
tives available for selection, resulting in a relative theoretical
and empirical underdevelopment in our understanding of how
people deal with larger choice sets. Binary and trinary choice
models have been extremely successful in accounting for choice
proportions and response times in everything from simple per-
ceptual tasks (Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004)
to more complex preferential and multi-attribute choice (Bogacz,
Usher, Zhang, & McClelland, 2007; Busemeyer & Diederich, 2002;
Busemeyer & Townsend, 1993), but extending them to modeling
choices among larger sets with many alternatives comes with a
host of new practical and theoretical challenges.

Perhaps the most critical challenge of moving toward model-
ing multi-alternative choices is that a modeler must account for
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how alternatives in a choice set are related to one another. These
relations come from similarity between choice options, which can
arise from shared features or common neural activity resulting
from overlapping activation patterns. These similarity relations
are often incorporated into multialternative choice as additions
to the mechanisms used in binary choice. For example, decision
field theory (Roe, Busemeyer, & Townsend, 2001) computes a
‘distance’ between alternatives in a choice set based on their
features, and applies a distance-dependent inhibition between
alternatives that allows it to account for important phenomena in
multialternative choice. Similarly, the leaky competing accumu-
lator model (Usher & McClelland, 2001, 2004) explicitly includes
lateral inhibition between the support for different alternatives,
reflecting the interactive processes between alternatives in neural
systems.

One drawback of these approaches is that they must use
separate accumulators to store support for each alternative in
the set, and then introduce dependencies between alternatives
by building in pairwise interactions between the accumulators.
The number of accumulators and binary comparisons needed
to fully specify the decision process grows very large as the
number of alternatives increases. In many cases, the number of
parameters needed to specify all accumulation rates (∼ n drift
rates for n alternatives) and pairwise relations (∼ n(n − 1)/2
comparisons for n alternatives) becomes unmanageable as the
number of alternatives grows large, making them unsuited to
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predicting selections among many alternatives. This problem is
exacerbated when considering responses on a continuum – such
as indicating two-dimensional motion direction on a circle, or
selecting a hue along a color wheel – where unique accumulators
cannot reasonably be assigned to every possible response.

These types of tasks were recently addressed by the work
of Smith (2016) (see also Ratcliff, 2018; Smith & Corbett, 2018),
who proposed a multidimensional diffusion process with circular
boundaries. This model makes very specific assumptions about
how choice alternatives along the continuum are related to one
another with alternatives on opposite sides of the circle providing
evidence directly against one another when support for one is
generated. For example, evidence favoring an alternative located
at 45 degrees provides evidence against an alternative located at
225 degrees, and some evidence for alternatives located at 40
or 50 degrees. Although it does not provide all of the answers
to modeling choice among many alternatives, adopting a similar
spatial way of representing alternatives and their support can
lead us to a more general theory of decision making among
multiple alternatives.

1.1. A geometric theory of dynamic decision making

This paper explores a general theory for multi-alternative
choice by establishing a geometric framework for constructing
models of dynamic decision making. At its core, the geomet-
ric framework is a method for addressing three fundamental
questions about the decision process:

• What alternatives does a decision-maker have and how are
they related to one another?

• What information does the decision-maker consider and
how does this change their beliefs/preferences relative to
the alternatives?

• What conditions trigger a decision in favor of each of the
available alternatives?

These questions bear a close resemblance to the search, stop-
ping, and selection rules that are used to characterize heuristic
decision strategies (Gigerenzer, Todd, & A.B.C. Research Group,
1999; Weitzman, 1979), but the first question elucidates an im-
portant factor that multi-alternative models in particular have to
address. The decision process requires knowing or finding out
what choice alternatives are available and how those alternatives
are related to one another. The assortment of alternatives defines
a context in which a decision takes place, resulting in the context
effects relevant to multi-alternative choice.

The geometric framework proposes a direct answer to each
of these questions while allowing room for domain-specific the-
ory to inform the resulting models. In short, it states that (1)
alternatives are represented as vectors in a multidimensional
space, oriented in directions determined by their psychologi-
cal representation; (2) beliefs or preferences are represented
as a point in this space that shifts over time according to a
sampling distribution that describes the information considered
during the decision; and (3) an alternative is chosen when the
belief/preference state meets a particular stopping condition, cor-
responding to a choice boundary formed by a hyperplane in the
multidimensional space.

There is a great deal to unpack from this, so I begin by
establishing what an optimal decision strategy prescribes. The
first section of this paper establishes the basic elements of the
framework by building an optimal model for decisions among n
alternatives (where each piece of incoming evidence favors ex-
actly 1 of the available options). The strategy this model describes
minimizes the amount of time required to make a selection for a

desired level of accuracy. It can therefore be used as a bench-
mark optimal model against which we compare other models
constructed using the geometric framework.

The second section of the paper examines cases where the
assumptions of this model fail, primarily due to similarity rela-
tions between the available alternatives. In these cases, it is still
possible to construct a model that optimizes decision time for
a desired accuracy, but the rules for stopping the accumulation
process and selecting an alternative must be conditioned on the
similarity relations between options in the choice set. Examining
how thresholds should be set to maintain accuracy allows us to
make empirical response time predictions for different alterna-
tives in these models, and I provide MATLAB code for deriving
these predictions across different sets of alternatives and decision
rules.

The third section of the paper extends the approach to model-
ing selections along a continuum, where the range of alternatives
and the support for them must be represented as (nearly) con-
tinuous quantities. It examines the circular and hyperspherical
diffusion model (Smith, 2016; Smith & Corbett, 2018) as a special
case of the geometric framework, where each possible alternative
in the space is available for selection and thresholds are held
constant across alternatives. It then examines cases where con-
stant thresholds might not be optimal and suggests avenues for
correcting choice boundaries for the similarities between alterna-
tives in continuous selection tasks.

The fourth section of the paper looks at assumptions and
approaches that should be taken to construct geometric models
of more complex multi-attribute and preferential choice. While
the relations between alternatives in inferential choice can often
be inferred from the physical properties of the stimuli or the
common structure of neural systems, the subjective nature of
preferential choice and the presence of correlated features make
the decision space less straightforward to construct for these
types of selections. In these cases, additional data such as binary
confusion matrices or similarity judgments (used in conjunction
with multidimensional scaling or singular value decomposition)
or neural data (using multi-voxel pattern analysis to infer rep-
resentational similarity) can be used to determine the relative
spatial orientations of alternatives. It also illustrates how the
geometric framework naturally results in context effects in these
types of multi-alternative choices.

The paper concludes with some final comments about evi-
dence dynamics and the possible applications of the geometric
framework. The range of these applications is exceptionally wide,
as the geometric framework is at its core a toolbox for developing
models — a general theory with interchangeable parts rather
than a domain-specific model.

2. Optimal geometric models

An obvious first question for models of multi-alternative
choices is: how should people make decisions in these cases?
In many choice scenarios, we might expect decision behavior
to approximate optimality due to the strong selection pressures
for decision success in our ancestral environments (Oaksford &
Chater, 2007) (though see Kvam, Cesario, Eisthen, Schossau, &
Hintze, 2015; Kvam & Hintze, 2018, regarding evolutionary claims
to optimality in simple binary choice). Even when observed
behavior does not appear to follow the normative or optimal pat-
tern, establishing a normative or optimal model for n-alternative
choice creates a benchmark for us to examine how and why
behavior deviates from their predictions. This can allow us to
better understand the computational constraints of the agents
(human decision-makers) and how they result in departures from
optimal performance (Anderson, 1990).



16 P.D. Kvam / Journal of Mathematical Psychology 91 (2019) 14–37

For these reasons, many existing models of binary and even
trinary choice are based on an optimal decision policy that min-
imizes the amount of time it takes to make a decision for a
particular desired level of accuracy. Most are derived from the
sequential probability ratio test [SPRT] (Edwards, 1965; Wald
& Wolfowitz, 1949), in which a decision-maker calculates and
updates the odds of a pair or set of hypotheses, and continually
checks these odds against an internally-set criterion θ . By stop-
ping and making a decision when the odds exceed this threshold,
the decision-maker can ensure a minimum level of expected
accuracy, provided that the prior odds of the hypotheses were
properly set.

In the binary version of the SPRT, information about the like-
lihood of the alternatives is represented as a balance between
support for the two options: the evidence state is the quantified
as the support for option A minus the support for option B. In
an inferential decision, this difference Ev(A) − Ev(B) is linearly
related to the posterior log odds of one hypothesis relative to
the other, LO(A : B).2 To ensure that the probabilities of the
hypotheses sum to one in binary choice, it must be the case
that the log odds always sum to zero Ev(A) + Ev(B) = 0 (this
need not hold in multi-alternative choice, but the probabilities
must still always sum to one). As the decision-maker gathers
new information, this balance shifts toward A or toward B. A
decision is made when the posterior log odds for one option
relative to the other exceeds a criterion value θ corresponding to
a desired level of accuracy. The minimum bound θ ensures that
the decision-maker can be confident with at least ceθ

: 1 odds
that the hypothesis they have chosen is the correct one, where
c is a scaling factor that corresponds to the baseline difficulty of
discrimination between the two hypotheses (a measure of d’ in
signal detection theory).

When we visualize this evidence accumulation process as it
unfolds over time, it generates a 1-dimensional random walk
in log odds space, describing an optimal Bayesian belief updat-
ing procedure (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Palmer, Huk, & Shadlen, 2005). In terms of stochastic processes,
it is described by a Markov chain where the position at time
t + 1 depends on the position at time t and the incoming evi-
dence, which determines the transitions between different levels
of evidence for A relative to B (see Diederich & Busemeyer, 2003).

This process has a clear spatial representation, where the
two alternatives are oriented in opposing directions such that
gathering support for option A moves the state in one direction
(up) while support for option B moves the state in the opposing
direction (down, see Fig. 1A). The support for option A is the
component of the evidence state in the direction of A, described by
a vector vA pointing upward. For example, if the evidence state is
s = +3, the component of [+3] along the positive direction vector
vA = [+1] describes the evidence for A, and the component of
[+3] along the negative direction vector vB = [−1] describes the
evidence for B. Since the evidence continuum is unidimensional
the computations are elementary: the support for alternative A
is compvA (+3) = 3 and the support for B is compvB (+3) = −3,
resulting in a balance of Ev(A) − Ev(B) = 6, which is linearly
related to the log odds of A:B by the scalar coefficient c.

Note that cases where the alternatives do not directly oppose
one another can actually be mapped into this representation by
adjusting the value of the scalar c (Bogacz et al., 2006), but this is
only straightforward for binary choice. I return to this point later:
uneven relations between alternatives are a fundamental part of
multi-alternative choice, so they cannot often be handled in the
same way.

2 It should be noted that many diffusion models depart from the log odds
framework (Link & Heath, 1975; Ratcliff, 1978). Models can still provide good
descriptions of the decision making process without making explicit reference
to the posterior odds of the various hypotheses.

Fig. 1. Representation of a person’s accumulated evidence and choice criteria
for 2-, 3-, and 4-alternative relative evidence processes (A, B, C) and 2- and
3-alternative absolute evidence processes (D, E). An alternative is chosen when
a person’s represented evidence (yellow/red) crosses the corresponding edge for
models A, B, and D, but the plane/face for models C and E . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Response time predictions from the random walk can be made
by setting the threshold value θ as well as the probability of
stepping up or down with each new piece of evidence (using
parameter p for the probability of stepping up and 1 − p for
stepping down) and attaching a distribution or fixed value to the
time between sequential steps of the accumulation process (t).
Typically this is done by assuming each step takes a fixed time,
such as t = 10 ms. If we wish to preserve the Markov property
when moving to continuous time, the time between steps should
instead be exponentially distributed with rate parameter γ , such
that the time between steps t ∼ Exponential(λ). The number of
steps it takes to reach one of the boundaries Ev(A) − Ev(B) ≥ θ
(response favoring A) or Ev(A) − Ev(B) ≤ −θ (response favor-
ing B) can be put together with t to compute a distribution of
response times. For example, taking 300 steps might result in a
response time of 3s if t is fixed to 10 ms, or a distribution RT ∼

Gamma(300, λ) if t is pulled from a distribution Exponential(λ).3
If evidence samples are arriving continuously rather than in

discrete packets, we can take the limit as t → 0 and the step
size also approaches 0. This yields a Wiener diffusion process
as described by Ratcliff (1978) and forms the basis for the dif-
fusion decision model of binary choice (Ratcliff & Smith, 2004;
Smith & Ratcliff, 2004). The response time predictions for binary
choice models using random walks and diffusion processes are
well-covered in the cognitive modeling literature (Diederich &
Busemeyer, 2003; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown,
& McKoon, 2016; Smith & Ratcliff, 2004), so I do not go into
detail on them here. However, I do provide MATLAB code that
can flexibly adjust to different numbers of alternatives (including
binary choice) in order to derive the response time predictions
for a normative model of n-alternative choice. To see how this
is done, it is helpful to examine how the optimal model should
change for selections among three alternatives and then build to
the general case of n alternatives.

2.1. Simple optimal models

Moving to multi-alternative choice requires us to reconsider
how support for one alternative interacts with other alternatives.
This is simplest when all of the available choice alternatives are
mutually exclusive, each new piece of evidence favors exactly
one of the alternatives, and a decision-maker desires to minimize

3 The value of λ can also be fixed to an arbitrary value like 10 ms as long
as the step size of the random walk is adjusted accordingly; it does not need
to invoke an additional free parameter into the model.
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response time for a specific level of accuracy (e.g. 80%) when
selecting one of the options in the set. In such a case, evidence for
one alternative is evidence against all other alternatives equally.
Since the decision-maker only selects one option, the probability
of choosing across all choice options (events) sums to one. These
conditions lead to a multi-dimensional representation of evidence
that unfolds within a set of response boundaries that form a
simplex. However, this jump is not immediately obvious. I first
cover the case of three alternatives and examine what must
change from binary choice, then use this to build to the general
case for n alternatives.

2.1.1. Three alternatives/triangle
Suppose a decision-maker has three mutually exclusive op-

tions – A, B, and C – and each new piece of evidence favors exactly
one of the three. The probabilities of all alternatives still must
sum to one, meaning that a +1% increase in support for A (in
choice set {A,B,C}) must result in a −1% decrease in support for
set {B, C}. Similarly, +1% support for B results in −1% support for
set {A, C}, and +1% support for C results in −1 support for {A, B}.
This necessarily means that +1% support for one alternative must
decrease support for each the other two by 0.5%. The representa-
tion of this type of decision was laid out in early work by Audley
and Pike (1965), although a different type of decision rule is used
here.

Returning to the vector-based representations of alternatives,
this implies that evidence moving the state toward A in direction
vA should move the state half that distance away from B, which is
in direction vB. For example moving 2 steps toward A should take
the decision-maker 1 step away from B and 1 step away from C.
This implies that the component of vector length 1 in direction
vA should have a component along vB as well as vC of −

1
2 . Put

together, this means that the following relations hold:

compvB (vA) = −
1
2

compvC (vA) = −
1
2

compvB (vC ) = −
1
2

(1)

This necessarily implies that the angle between all pairs of
vectors vA, vB, and vC is exactly 2π

3 , or 120 degrees. This is because
compy(x) = ∥x∥ cos(φxy) = −

1
2 , where φxy is the angle between

the vectors, implies φxy = cos−1(− 1
2 ) =

2π
3 . The resulting

arrangement of vectors for alternatives A, B, and C is shown in
the left panel of Fig. 2. This results in a very simple geometric re-
lationship between the evidence for different alternatives, which
is at the core of the geometric framework. Given evidence EA that
favors option A, the amount of evidence it provides for any option
B, EB, depends on the angle φAB between vA and vB:

EB|EA = ∥EA∥ cos(φAB). (2)

The stopping conditions for this case will be similar to the
binary choice case. Once the component of the evidence state
along vA, vB, or vC exceeds a criterion value θ , a choice is made
in favor of the corresponding alternative. This guarantees that
the net probability in favor of (e.g.) A relative to the set of all
other alternatives is at least θ , guaranteeing a level of accuracy
determined by θ − 1/n (assuming there is exactly one correct
response).

Since we assumed that each incoming piece of evidence favors
exactly one alternative, we can represent this optimal accumula-
tion process as a random walk on a hexagonal lattice, shown in
Fig. 2. This allows for steps toward vA at 60 degrees, vB at 180
degrees, or vC at 300 degrees with probabilities p, q, and 1 −

p− q according to the stimulus presented. The 3-alternative case

Fig. 2. Vectors describing direction of support for each alternative (left) and
hex lattice for a 3-alternative random walk model with threshold θ = 2 (right).
Red, blue, and green nodes correspond to absorbing states for alternatives A, B,
and C, respectively . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

only requires additional parameters specifying the probabilities
of steps in the possible directions (2, giving p, q, and 1− p− q as
the step probabilities) and the time between steps in the chain λ.

In some cases, it can be useful to model this random walk
as a Markov chain with a finite number of states. This allows
for response time predictions to be analytically derived using
a continuous-time, discrete-state model (see Diederich & Buse-
meyer, 2003).4 Critically, the model of Diederich and Busemeyer
(2003) normalizes the sum of evidence for all alternatives to
be zero, preserving the total probability as well as allowing for
better model fits a similar transformation is used to improve
model performance in Ratcliff and Starns (2013). Evidence that
a person has at time t is specified by a vector s(t), which gives
the location of the evidence using a point within the lattice. In
the lattice shown in Fig. 2, s would have 31 entries, designating
the probability that a person’s beliefs correspond to each of the 31
possible belief states. A 31 × 31 transition matrix then specifies
the probabilities of moving from one state to another, with 15
of these specifying absorbing states that generate a response.
Code for this Markov chain model is provided at osf.io/75qv4/.
However, as the threshold gets substantially higher (greater than
θ = 2 steps shown on the right of Fig. 2) a large number of states
are required, and this approach to modeling quickly becomes
impractical.

Whether using a Markov chain or simulating the random walk
in continuous space, the stopping rule is the same. When the
component of the state s along any of the vector describing
the choice alternatives vA, vB, or vC exceeds θ , a decision is
triggered in favor of the corresponding alternative. For an optimal
model with 3 alternatives and arbitrary choice criterion θ , the
choice boundaries will form an equilateral triangle like the one
shown above. If the process starts at the origin and moves in 2
dimensions, the system of equations specifying the interior of the
triangle (the conditions under which evidence accumulation will
continue) is⎧⎨⎩

y > −θ

y < 2θ + x
√
3

y < 2θ − x
√
3

With the response boundaries established, we have the com-
plete picture of the dynamics for the 3-alternative model. It
should start at the origin unless some prior information is given

4 A discrete-time model can also be used as desired for situations where the
number of steps rather than continuous RT distributions are useful. For example,
predicting how many cards a person will draw from different decks or how many
samples they will gather before choosing can make use of discrete-time Markov
chains.
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about the likelihood of the alternatives (in which case it should
move to reflect the new prior probabilities of the alternatives).
When the stimulus is presented, the state moves in direction vA
with likelihood p given by the proportion of samples that favor A,
direction vB with likelihood q given by the proportion of samples
that favor B, and direction vC with likelihood 1 − p − q given
by the proportion of samples that favor C. A decision is made
whenever the component of s along one of these vectors exceeds
θ . The response time is given by the number of steps it took to
cross the threshold, either multiplied by a fixed time value so that
RT = ∆ · λ or pulled from an exponential distribution so that
RT ∼ Gamma(∆, λ), where λ is the expected amount of time for
each step and ∆ is the number of steps it took.

Note that the main elements that had to change from the
binary choice case are the positioning of the response alternatives
(120 degrees from one another vs 180 degrees from one another)
and the number of step probabilities (p, q, and 1− p− q vs p and
1 − p). These same properties will change when we move to the
case of n alternatives.

2.1.2. N alternatives/simplex
The general ideas from the 3-alternative case allow us to

scale the optimal model up to any arbitrarily large number of
alternatives n. In the same way that the diffusion model (Ratcliff,
1978) implements the sequential probability ratio test (Wald
& Wolfowitz, 1949), a multidimensional diffusion process on a
triangle – or in the case below, a simplex – will implement the
multihypothesis sequential probability ratio test [MSPRT] (Baum
& Veeravalli, 1994; Bogacz, 2007, 2009) as the step size gets
very small. The computations necessary for carrying out this type
of inference process are thought to be carried out in the basal
ganglia and cortex (Bogacz & Gurney, 2007), providing a link
between the geometric model presented here and the neurobi-
ology of these types of multialternative decisions (see also Niwa
& Ditterich, 2008, which models neural accumulators using a
triangular boundary approach)

So how can the optimal strategy be represented in a decision
space for more than three alternatives, as in the triangular repre-
sentation shown above? In order to maintain a sum of zero across
evidence for all alternatives (total probability of one), information
for alternative A must necessarily be evidence against the other
n − 1 alternatives, such that for every alternative i ̸= j,

cos(φij) =
vi · vj

∥vi∥∥vj∥
= −

1
n − 1

. (3)

Evidence for any individual alternative provides evidence
against all others alternatives equally. The angle between any
pair of vectors describing alternatives must therefore be φij =

cos−1(− 1
n−1 ). As before, a decision will be made when the crite-

rion θ is reached along a direction corresponding to one of the
alternatives, where θ is determined by the desired probability of
making a correct answer.

Applying this decision rule to the case of four alternatives,
the response boundaries corresponding to alternatives A, B, C,
and D would each consist of a plane in a 3-dimensional space.
Together they would form a tetrahedron (Fig. 1C), and evidence
accumulation would unfold inside the figure bounded by these
planes by sampling A (stepping in direction vA) with probability p,
B with probability q, C with probability r , and D with probability
1 − p − q − r .

In order to accommodate n alternatives, this would naturally
be extended to permit evidence accumulation in (n − 1) dimen-
sions. The evidence state would exist in the interior of a simplex
(the general version of a triangle or tetrahedron in 4+ dimensions)
formed by the choice boundaries. Each choice boundary would
compose an (n − 2)-dimensional facet of the simplex.

It will be more mathematically convenient to specify a stan-
dard simplex as the response boundaries than specifying each of
the n-planes individually. A standard simplex uses n dimensions
for n alternatives to specify an (n−1)-simplex in which evidence
accumulation can unfold.

Taking this approach, the space of evidence accumulation will
be the interior of the n-simplex denoted as ∆n. The vertices of ∆n
have the following coordinate expressions:

[1, 0, 0, . . . , 0]

[0, 1, 0, . . . , 0]

· · ·

[0, 0, . . . , 1]
The center of ∆n is C∆n = [1/n, 1/n, . . . , 1/n]. The proba-

bility of an alternative k is given by the kth coordinate of the
state. However, because all of the probabilities must sum to
one, the entire n-dimensional space is not the space of evidence
accumulation because the space is constrained by one dimension.

The facets of the simplex are formed by taking a subset n−1 of
these vertices, whose combination forms an (n−1)-simplex ∆n−1.
Each unique facet corresponds to a choice alternative — when the
random walk exceeds the value θ for one of the alternatives, it
crosses through a facet and a decision in favor of that alternative
is triggered. Each subset of vertices gives an equation describing
its composite facet: supposing each dimension is denoted xi in
i = 1, . . . , n− 1 (rather than x, y, z, etc.), the equation for the ith
facet in n dimensions is given by

a1x1 + a2x2 + · · · + anxn − aixi = θ (4)

We can generate a system of equations by putting together
all of the n facets and generating inequalities that point toward
the interior of the simplex. This system of equation constitutes
a list of checks that can be run at each step of the evidence
accumulation process to examine whether a decision should be
made (states violates an inequality) or continue (no inequalities
are violated). The system consists of n inequalities:

∀j, j = 1, . . . , n
{

−xj +
∑n

i=1 xi < θ (5)

Essentially, one adds up the values along every dimension
except for the jth dimension. So as long as the sum of the
coordinates in every (n− 1)-subset of the dimensions composing
the simplex are less than θ , the process remains on the interior
of the simplex. When one of these sums becomes larger than θ ,
a decision is triggered in favor of alternative j, where xj is the
omitted term from the equation for its facet.

2.2. Selecting or rejecting alternatives

In some decision situations, a decision-maker may not be
looking to select from a set of alternatives, but rather make a
binary choice on whether to select or reject each individual item
in a set. This may apply to cases where they are interested in
‘pruning’ the set for bad alternatives, or assigning ranks to the
alternatives. In these cases, two modifications are necessary. First,
there must be two boundaries for each item: a ‘positive’ selection
boundary vA+ and a ‘negative’ rejection boundary vA− = −vA+.
Evidence favoring option A will move the state in direction vA+,
and evidence against option A will move it in the opposing
direction vA−. Once sufficient evidence in favor or against an
option is gathered, that option will be chosen as the best in the
set or rejected as the worst in the set and removed, respectively.
In some cases decision makers may wish to have asymmetric
rejection and acceptance thresholds (perhaps easily ruling items
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out but being more careful when deciding which one is their
favorite), θ+ and θ− respectively.

Second, the relative orientations of the items will need to
change. We can think of each alternative in the set as its own
miniature binary choice scenario taking place along a single di-
mension. Evidence for or against A will not necessarily be ev-
idence for or against B, as they could both be selected or both
rejected; they are not mutually exclusive in these types of choice
tasks. As before, the selection or rejection thresholds will cre-
ate a hyperplane orthogonal to the corresponding vector. An
alternative is accepted if its coordinate along the corresponding
dimension exceeds θ+, and rejected if its coordinate along the
corresponding dimension dips below −θ−.

Accept i if: xi > θ+

Reject i if: xi < −θ− (6)

This will create a geometric figure like the ones shown in
Fig. 1D (for situations with two alternatives) or 1E (for situations
with three alternatives). If all alternatives have the same positive
and negative thresholds, the figure formed by their boundaries
will be a hypercube, with n dimensions for n alternatives.

Negative choice boundaries provide a mechanism for mod-
eling discrete choice tasks like ranking and best–worst deci-
sions (Finn & Louviere, 1992; Hawkins, Marley, Heathcote, Flynn,
Louviere, & Brown, 2014b; Marley & Louviere, 2005). When a
positive boundary θA+ is hit, alternative A is ranked as the best
of the remaining set (so rank #1 if it is the first, #2 if it is the
second boundary hit, and so on). When a negative boundary θA−

in direction is hit, alternative A is ranked as the worst of the
remaining set (rank #n if it is the first hit, #n-1 if it is the second,
and so on). Evidence suggests that these two processes can hap-
pen coincidentally and seem to have similar properties (Hawkins,
Marley, Heathcote, Flynn, Louviere, & Brown, 2014a), offering
support for a geometric approach treating them as opposing ends
of a single evidence accumulation space. Negative alternatives
therefore provide a method for dynamically modeling these types
of ranking paradigms, and indeed the best–worst linear ballis-
tic accumulator model of Hawkins et al. (2014b) is possible to
reconstruct (and potentially improve upon) using the geometric
framework.

This completes the general solution to the question of how
a decision maker should choose among n alternatives (if they
wish to minimize response time for a desired level of accuracy)
when the alternatives are mutually exclusive and each piece of
incoming evidence favors exactly one of the possible alternatives,
or when ranking or rejecting alternatives. When a single option
is correct, setting the choice boundary θ guarantees that the
probability of selecting the correct answer, no matter the number
of options, is at least θ + 1/n when a choice is made. Unfortu-
nately, not all decision situations are this simple; often, incoming
evidence may favor a subset of the alternatives while disfavoring
another subset. This creates violations of the assumptions of
the normative model covered thus far. In the next section, we
examine some of the ways these violations can occur and how
a decision-maker can maintain the same level of accuracy when
they do.

3. Similarity and the representation of alternatives

One of the key assumptions allowing us to construct the
simplex model presented in the previous section is that each
piece of evidence favors exactly one alternative in the choice
set, but this assumption is frequently violated in real decisions.
For example, suppose a decision-maker is determining which of
a set of directions a dot stimulus is moving (as in the popular
random dot motion/kinetogram task Ball & Sekuler, 1987; Julesz,

1971). Suppose motion direction is drawn randomly from a mean
direction of 90 degrees (north), 70 degrees (north-northeast),
or 270 degrees (south), with some noise around the mean in
each case. The decision-maker’s task is to determine which of
these three mean directions is giving rise to the dot stimulus
shown on a screen in front of them. Apparent motion toward
80 degrees might provide evidence for responses at both 70 and
90 degrees, but evidence against motion at 270 degrees. Even
motion perfectly favoring one option (70 degrees) may provide
some evidence for a second (90 degree motion) while disfavoring
a third (270 degrees).

These situations have natural connections to the neural under-
pinnings of decision behavior as well. The activation functions for
different alternatives in a choice set, such as 70- and 90-degree
motion directions or orientations, may have overlapping response
regions. In this case, both the set of neurons tracking 90-degree
motion and the set tracking 70-degree motion might be activated
in response to a stimulus with 80-degree motion. This makes sim-
ilarity an unavoidable consideration in multi-alternative choice:
due to the nature of neural representations in the brain, incoming
evidence cannot be isolated to favor exactly one of the options in
an available choice set while providing evidence against all others
evenly.

In the geometric framework, this problem is solved quite nat-
urally by placing the vectors describing choice alternatives at un-
even orientations in the decision space, then adjusting thresholds
to compensate for the interactions between them. Before delving
into the details of how to do this, it is helpful to examine how
such problems have been dealt with in other multialternative
models.

3.1. Relation to previous approaches

In existing decision models, the support for each alternative
in a set is typically represented as a distinct value called accumu-
lators (LaBerge, 1962; Smith & Vickers, 1988; Vickers, 1979), and
the similarity relations between different options are built into
interactions between the accumulators for different alternatives.
For example, decision field theory (Busemeyer & Diederich, 2002;
Roe et al., 2001) includes an additional step in the decision
process where pairs of items are contrasted against one an-
other before computing accumulator values for each one. The
leaky competing accumulator model (Usher & McClelland, 2001,
2004) includes inter-accumulator competition and loss aversion
to a similar effect, including an explicit moment-to-moment
interaction between accumulator values in the form of lateral
inhibition. The multi-attribute linear ballistic accumulator model
(Trueblood, Brown, & Heathcote, 2014) includes pairwise com-
parisons as well as subjective attribute values that result in
interactions between alternatives in the set, and the selective
attention, mapping, and ballistic accumulation model (Brown,
Marley, Donkin, & Heathcote, 2008) specifies and utilizes adja-
cency between categories to define the evidence accumulation
process for separate, correlated accumulators.

Models of confidence utilize similar approaches to handle the
ordinal relations between different confidence levels — ordinal
states or accumulators are fixed according to some adjacency
to one another and often to some underlying distribution of
stimulus strength (as in signal detection Pleskac & Busemeyer,
2010; Ratcliff & Starns, 2009). The RTCON2 model developed
by Ratcliff and Starns (2013) explicitly normalizes the sum of
evidence across accumulators, in effect introducing an inhibitory
relationship between the values of different accumulators in the
set as well.

Using vectors to represent alternatives and then orienting
them in a ‘‘decision space’’ can yield the same predictions as cor-
related accumulators with fewer parameters, while maintaining
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Fig. 3. Diagram of different orientations of response alternatives and the evidence accumulation processes they set involve.

the same connections to neural structures. Alternatives that are
diametrically opposed and provide evidence against one another
should be represented by vectors pointing in opposite direc-
tions, denoting inhibition, and ones that are extremely similar
should be represented by vectors pointing in nearly the same
direction, denoting coactivation between them. The cosine sim-
ilarity relationship described in Eq. (2) is ideal for quantifying
these relationships. The cosine function has been used to describe
similarity in a multitude of vector space models (Bhatia, 2017;
Harris, 1954; Nosofsky, 1997; Turk & Pentland, 1991) including
those used in latent semantic analysis (Deerwester, Dumais, Fur-
nas, Landauer, & Harshman, 1990; Furnas, Deerwester, Dumais,
Landauer, Harshman, Streeter, & Lochbaum, 1988; Landauer &
Dumais, 1997) and quantum cognition (Busemeyer & Bruza, 2012;
Pothos, Busemeyer, & Trueblood, 2013).

This approach is shown in Fig. 3: full inhibition between
alternatives resulting in zero-sum evidence is equivalent to the
alternatives being oriented at 180 degrees relative to one another
(Fig. 3A), which creates the representation of evidence observed
in random walk and diffusion models (Link & Heath, 1975; Rat-
cliff, 1978; Stone, 1960).5 A representation of alternatives with
evidence representations that do not interact, instead accumu-
lating independently, is equivalent to a 90 degree orientation
between alternatives (Fig. 3B), which is adopted by uncorre-
lated accumulator models of choice (Brown & Heathcote, 2005,
2008; Smith & Van Zandt, 2000). Partial inhibition or negative
correlation between accumulators is generated by obtuse an-
gles between the vectors for alternatives (Fig. 3C), and positive
correlations between accumulators come from angles between
alternatives that are less than 90 degrees (acute angles / Fig. 3D).
These same relations can be obtained by deliberately building in
correlations between options.

Note that these similarity relations can essentially be factored
out when evidence accumulates in binary choice. An evidence
state linearly related to the log odds of the two alternatives
(assuming an inferential decision) can be computed by simply
taking the difference between evidence for option A and option B.
This creates an equivalence class of optimal models, as any degree
of inhibition or excitation between them can be compensated
for by simply scaling the difference in evidence between alterna-
tives by a constant to compute the true posterior probability of
A:B (Bogacz et al., 2006). In the next section, we will use a similar
approach to control for the similarity relations among three or
more alternatives with unequal similarity relations. Rather than
a simple difference, we can subtract the support across all al-
ternatives from the support for each individual alternative to
compute the probabilities of each possible option and use this to
set stopping and decision rules for each alternative.

5 Note that this refers to the relative orientation of the directions of the
alternatives (the arrows in Fig. 3), not the choice boundaries.

3.2. Three or more alternatives

The first step in constructing a geometric model is to un-
derstand the relationship between alternatives so that similarity
can be translated into geometric representations like those in
Fig. 3. For simplicity, we can begin by directly using physical
relationships between alternatives. Applying it to the previous
example, suppose a decision-maker is determining 2-dimensional
motion direction on a 360 degree circle. If the physical relations
are preserved, 90-degree motion would be represented by the
vector v90 = [0, 1], 270-degree motion by the vector v270 =

[0, −1], and 70-degree motion as v70 = [.34, .94]. Using the
cosine metric to quantify similarity on a [−1, +1] scale, we find
that φ70,90 = .94 (similarity between 70 and 90), φ70,270 = −.94
(similarity between 70 and 270), and φ90,270 = −1 (similarity
between 90 and 270).

The cosine metric is also used to quantify the amount of
evidence allotted to each alternative with new information. New
information ι is represented by vector vι. The direction of this vec-
tor describes which alternative it most favors (including those not
in the set) and its length ∥vι∥ describes the amount of information
it confers. In turn, the amount of support ι provides for option A
is the scalar projection of vι onto vA:

projA(ι) = ∥ι∥ cos(φιA) =
vι · vA

∥vA∥
(7)

The evidence that a particular piece of information provides
for each available alternative is therefore a function of the con-
gruence of the alternative with that information. In turn, the
distribution of support across alternatives will be determined by
the congruence of each alternative with the new information.
Naturally, this will result in correlations between support for
different alternatives, unless they are all orthogonal as in Fig. 3B.
The relative orientations of the alternative vectors embody our
theory of how the alternatives are represented relative to one
another, providing complete information about how evidence
simultaneously affects support for each of the available choice
options.

As evidence accumulates and the evidence state moves around,
the evidence for each alternative shifts accordingly. As before, the
evidence state s provides support for alternative j according to the
component of the state along the vector describing alternative j,
vj:

Support for j: compvj (s). (8)

The rules for halting the evidence accumulation process will
again take advantage of this geometric description of the support
for each alternative. However, at this point there are diverging
approaches that can be taken. The simpler absolute stopping rules
halt evidence accumulation on the basis of the support for each
alternative independently, and are frequently adopted by accu-
mulator models of choice. However, these stopping rules are not
optimal in the sense of minimizing response time for a desired
level of accuracy. This kind of optimality requires relative stopping
rules, which consider the degree of support for one alternative
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Fig. 4. Representation of three alternatives and their decision rules (colored vectors/lines) on top of the unit circle (gray) for an absolute choice rule where thresholds
are the same for each alternative (θabs) (left). The middle panel shows the choice proportions for each alternative (probability estimate of choosing each option),
and the right panels show the corresponding RT distribution for each alternative . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

over and above the support for all of the other alternatives in a
choice set. Because optimality requires us to consider the proba-
bility of a target alternative being correct relative to all others in
the set, it demands consideration of how support for the target
alternative is related to support for the others.

3.2.1. Absolute stopping rule
Although it is not optimal in the sense of minimizing response

time for a given accuracy, a simple stopping rule can be ap-
plied by comparing the evidence for each alternative j, given as
compvj (s), to a criterion θabs. This is referred to as an absolute
stopping rule: the decision process is terminated when evidence
for any of the available choice options exceeds θabs. Such a rule is
typical of accumulator models (Brown & Heathcote, 2008; Smith
& Van Zandt, 2000; Smith & Vickers, 1988; Usher & McClelland,
2001), and is particularly convenient because it corresponds to
a set of processes racing to a single finish line, such as indi-
vidual neurons or neural populations firing until one reaches a
movement initiation threshold (Schurger, Sitt, & Dehaene, 2012;
Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014).6

Geometrically, the boundaries for the choice rules are similar
to the ones we saw in the simplex case. A hyperplane Hj is
placed orthogonal to each vector vj (such that Hj · vj = 0) at
distance θabs from the origin. It will intersect vj at point (θabs · vj),
so the hyperplane that solves these conditions can be specified
as a function of the coordinates (using a Cartesian system of
coordinates in m dimensions described as x1, x2, . . . , xm) of the
alternative vector:

Hj : vj · [x1, x2, . . . , xm] = θabs (9)

For example, an alternative A represented by vA = [
√

.4,
√

.6],
θabs = 2 would have response rule H : x

√
.4 + y

√
.6 = 2. When

the line specified by this equation is crossed, i.e. x
√

.4+ y
√

.6 ≥ 2
alternative A is chosen. More generally, response alternative j is
chosen when the evidence state s meets the following condition:

n∑
i=1

jisi ≥ θabs (10)

6 The orientation between alternatives will determine the correlation be-
tween separate accumulators. For those models that assume independence
between evidence for different options where evidence for A does not affect
evidence for B, this angle must be cos−1(φAB) = 0, or φAB = 90 degrees.

where ji is the ith coordinate of vj and si is the coordinates of the
evidence state. Put together, there will be exactly m inequalities
for m different response alternatives.

While this type of stopping rule is simple and easy to test, it is
not strictly optimal as it does not result in the evidence accumu-
lation process halting at a particular balance of odds between the
alternatives. While it shares many properties with the relative or
optimal stopping rules I describe next, the predictions do not line
up exactly (see Figs. 4 and 5).

3.2.2. Relative/optimal stopping rule
In past work, evidence – particularly evidence representing

the posterior odds of hypotheses – is commonly represented as
a balance between support for two or more alternatives rather
than separate accumulators. This is a central feature of diffusion
models (Ratcliff, 1978; Ratcliff et al., 2016; Smith & Ratcliff, 2004)
and other models based on diffusion processes or the sequential
probability ratio test (Edwards, 1965; Link & Heath, 1975). This
can be done easily when similarity relations are all equal, as
with the simple optimal simplex models described in Section 2.1.
However, a critical feature of alternatives with similarity relations
is that the sum of the shifts in evidence across all alternatives j
will often not automatically sum to zero. Fortunately, this does
not mean that an optimal strategy minimizing response time for
a desired level of accuracy cannot be constructed. The decision-
maker simply has to control for how the probabilities across
alternatives shift in the face of these similarity relations.

In multi-alternative choice, a balance of evidence is computed
by taking the evidence for each alternative and normalizing the
sum to zero by subtracting the mean shift in evidence across
all alternatives from the support for each option (as in Ratcliff,
2018; Ratcliff & Starns, 2013). Computing the probability of each
alternative in the geometric framework proposed here requires a
similar approach: we have to factor out the support for the op-
posing options and compare it to the support for each individual
option.

This modification means that each alternative will not gain
support at the same rate. If an alternative has many similar ones
around it, it will tend to accumulate more slowly because the
mean shift across alternatives will be higher. Returning to our
example with dot motion that could be centered at 70, 90, or
270 degrees, a +1 unit step toward 90-degrees (v90 = [0, 1])
will result in a shift of +.94 for the 70-degree alternative (v70 ≈

[.34, .94] and a −1 shift for the 270-degree alternative (v270 =
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Fig. 5. Representation of three alternatives (different colored vectors) and their decision rules (colored lines) on top of the unit circle (gray) for a relative choice
rule where thresholds (θrel) are adjusted to compensate for similarity relations among them (left). The middle panel shows the simulated choice proportions for each
alternative, and the right panel shows the corresponding RT distribution for each alternative . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

[0, −1]), for a net evidence shift of (+1 + (−1) + 0.94 =) +.94.
Subtracting this from each of the alternatives equally results in
a net increase in probability proportional to +.69 in favor of the
90-degree motion alternative. Conversely, suppose that a +1 unit
step is taken toward the 270-degree alternative: this would result
in −1 for the 90-degree alternative and −.94 for the 70-degree
alternative, an average shift of −.31. This increases the probability
shift in favor of the 270-degree alternative, resulting in a net
+1.31 shift in favor of it rather than a single +1 unit shift.

The true support for each alternative – in terms of posterior
probabilities – must be calculated to compensate for these net
shifts. Because the probability shift differs depending on the
similarity relations among alternatives, each option differs in the
amount of support it will require to obtain the same odds of
being correct if selected. Consequently, different thresholds for
each alternative are required to ensure that the probabilities are
matched across the decision rules for each alternative. For exam-
ple, if the decision-maker desires an 80% chance of being correct,
the thresholds for selecting 90-degree or 70-degree motion will
have to higher than the ones for selecting 270-degree motion.

To calculate a stopping rule which compensates for the simi-
larity between alternatives, we first need to compute the condi-
tions under which the probability for one alternative minus all
other alternatives exceed the desired threshold. If the desired
accuracy corresponds to a probability level specified by θrel, then
the stopping condition for choosing option j (specified by vector
vj in the space) out of n alternatives given state s is given by:

compvj (s) −

n∑
k=1

vk · s ≥ θ, k ̸= j. (11)

This stopping rule gives the optimal choice boundaries for
any set of interrelated alternatives. As a natural consequence
of Eq. (11), having a large number of similar alternatives in a
choice set will force the alternatives to ‘‘share’’ evidence, diluting
the gain in information provided by each new piece of evidence.
In turn, the greater the number of similar choice alternatives a
decision-maker has, the higher decision thresholds will need to
be to make selections with a constant level of accuracy. As Usher,
Olami, and McClelland (2002) note with regard to their model,
adjusting the thresholds based on the alternatives present may
provide an explanation for Hick’s law in multi-alternative choice:
a greater number of alternatives will ‘‘crowd’’ the decision space,
requiring a decision-maker to increase thresholds to maintain
accuracy. In turn, the higher thresholds will result in slower
response times as more alternatives are introduced.

3.3. MATLAB code for relative and absolute models

Given the two potential ways of implementing stopping rules
for multi-alternative choice, a reasonable concern is what empir-
ical properties each approach generates. To assist with exploring
and visualizing the effects of different sets of choice options,
MATLAB code that can generate the predictions of each kind of
model accompanies this paper on the Open Science Framework
at https://osf.io/4ygvs/.

This code allows the user to specify a set of alternatives
either by randomly generating n options in m dimensions or by
putting in custom vectors for each alternative and a probability
of sampling evidence in favor of each one at each time step. The
user can also specify the desired threshold(s) and whether they
prefer to have an absolute decision rule (θabs) or a relative one
(θrel). The program will then generate a set of choice proportions
covering each alternative in the set as well as a response time
distribution for each one. Note that these predictions are gener-
ated via simulations (the number of trials is adjustable), as they
do not have apparently straightforward analytic likelihoods.

For alternatives arranged in m = 3 dimensions, the pro-
gram will visualize these vectors in three dimensions on a plot
that can be pulled and rotated around. For those arranged in
m = 2 dimensions, it will show not only the vectors for each
alternative, but also a line illustrating the response boundary
corresponding to each alternative. The user is free to also specify
non-decision time, step size, step times (leading to different RT
distributions), and the number of simulations to run to gen-
erate predictions, among other control variables. Although the
program will generate response and response time simulated
predictions for higher-dimensional decision spaces (of more than
three dimensions), it will not illustrate them in the left panel.

Some examples of the plots generated by the program, using
a two-dimensional arrangement with four response alternatives,
are shown here. Fig. 4 illustrates an absolute decision rule, where
each alternative has the same threshold θabs (Eq. (10)). As it shows
in the left panel, the thresholds for the alternatives (labeled 1,
2, and 3) are orthogonal to the vector specifying their direction.
In this case, all of the alternatives have the same right-skewed
distributions of response times (similar to the symmetric error
and correct response times predicted by random walk models;
Stone, 1960). But because there are multiple alternatives in the
same direction (1 and 2), these tend to be selected more often
even though alternative 3 is the most frequently sampled.

https://osf.io/4ygvs/
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Fig. 5 illustrates a relative decision rule, where an alternative
is chosen only when the support for it is sufficiently greater
than that of all other alternatives (Eq. (11)). Compared to the
absolute stopping rule, there are two key differences in repre-
sentation that can be seen in the left panel of the figure. First,
the thresholds for different alternatives vary in height: thresholds
for alternatives with no other neighboring similar alternatives
(alternative 3) are substantially lower than those for alternatives
with nearby/similar competitors (alternatives 1 and 2). Conse-
quently, the lower threshold for alternative 3 results in it being
picked more often (middle panel). It also creates a substantially
faster distribution of response times for this alternative while
maintaining the same level of accuracy (bottom-right panel).

A second thing to note is that the thresholds in the rela-
tive decision rule model are not quite orthogonal to the vectors
specifying them, instead leaning slightly away from nearby alter-
natives to create a more tightly closed polygon. This allows for
more complete coverage of the decision space, and as a result it
generates faster response times for all of the alternatives while
maintaining the same desired level of accuracy (given by θrel).
Thus, while the absolute decision rule is generally simpler and
likely easier to implement, there is a significant benefit in terms
of accuracy and response times to using a relative decision rule.

This approach and the MATLAB code can be used to predict
choices among any discrete set of alternatives with known simi-
larity relations; the relative decision rule describes the stopping
conditions necessary to optimize response times for a desired
level of accuracy. However, the sampling distributions and re-
sponse distributions I have covered so far are mainly appropriate
for small choice sets where a probability of sampling can be
assigned individually to each alternative. In the next section, I ex-
tend the framework to continuous response sets and continuous
sampling distributions, showing that the geometric framework
can be flexibly applied to modeling both responses among both
discrete and continuous sets of alternatives.

4. Continuous distributions of evidence and responses

A major benefit of the geometric approach is that it is con-
venient to move from small to large choice sets and even to a
continuum of response options. This allows a modeler to scale
up the approach to model behavior in situations where a deci-
sion maker has to specify a spatial location or direction, a color
(e.g. hue), a price ($), the magnitude of a stimulus, or any sort
of continuous or near-continuous property like length or time.
At the same time, it can still be used when there are a lim-
ited set of options to select. Representing alternatives as vectors
permits a modeler to place more or fewer alternatives in the
same multidimensional space, and specify their relations to one
another by virtue of the angles between the vectors. Rather than
having to set all of the pairwise correlations between accumu-
lators for separate alternatives, a single evidence representation
can be stored and related to each alternative by measuring its
component along the vector for each alternative. This makes it
more computationally tractable for large choice sets than deci-
sion strategies explicitly considering pairwise comparisons (Roe
et al., 2001; Trueblood et al., 2014; Usher & McClelland, 2001),
as all of the inter-alternative relationships are contained in their
representation (which can often be set a priori) rather than added
onto the sampling process itself.

The analytic likelihoods for most of the continuous models
covered here are presented in work by Smith (2016), Smith and
Corbett (2018). However, it is useful to build up to the contin-
uous models to see how they are related to the discrete sets
of alternatives. Both the representation of alternatives and the
evidence dynamics of the models of Smith and Corbett follow as

Fig. 6. The limit as the number of individual boundaries (H1−4) equidistant from
the origin approaches infinity creates a circular choice boundary in 2 dimensions.

asymptotic cases of the multialternative geometric models as the
number of alternatives in a given space gets very large, resulting
in a strong connection between the present geometric framework
and their work, which I discuss later in this section. However,
before discussing this work it is helpful to build some theoretical
basis and intuition for how to generate a continuous span of
responses in the first place.

4.1. Continuous spans of alternatives

In two dimensions, the vectors corresponding to response
alternatives can point in any direction from 0 to 360 degrees.
Naturally, the limiting case as the number of alternatives gets
very large will be a continuous span of response alternatives
along this entire range. If we assume that the same threshold
height is used for all alternatives – as with the absolute stopping
rules I described in the previous section – then the boundaries
for all possible alternatives in this space create a circle, as shown
in Fig. 6. This type of stopping rule is described by Smith (2016):
the radius of the circle bounding evidence accumulation will be
specified by the single parameter θabs, giving the total amount of
evidence needed to stop and make a decision.

The lone inequality
∑n

i=1 s
2
i < θ , where si is the coordinate

of state s along dimension i, is sufficient to divide states into
decision and non-decision regions. The stopping rule therefore
refers directly to the coordinates of the space in which evidence
accumulation unfolds, rather than needing to make reference to
the component of the state along individual vectors.

Higher-dimensional stopping rules can also be constructed.
Formally, evidence accumulation unfolds with alternatives ar-
ranged as vectors specified on an n-sphere, where n is the number
of dimensions needed. The n-sphere On with radius 1 is a figure
composed of a set of points pi that satisfy the condition

On
= {p ∈ Rn+1

: ∥pi∥ = 1}

Each of these points can correspond to a unique alternative
vector, yielding an infinite number of potential choice options in
a finite number of dimensions n. This is how the discrete repre-
sentations of alternatives can be taken to its limit to represent a
continuous span of alternatives.

A particularly desirable property of the n-sphere representa-
tion of alternatives is that the sum of the cosine similarity relation
defined by Eq. (2) is zero-sum across all alternatives that could
be represented in the n-dimensional space by virtue of every
integral

∫
·· ·

∫ 2π
0 cos(φ)dφ = 0. As with the optimal models, this

connects the support among alternatives to a probability space
representation, as the net probabilities (probability minus 1/#
of options) across all options must also sum to zero. As before,
the probability of alternative A relative to alternative B given
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an evidence state is computable as the relative values of the
component of the state s along the vectors corresponding to their
directions in the multidimensional space (vA and vB). The net
probability of a span of alternatives will be given as the integral
sum of the dot product between the state and each of the internal
vectors between vA and vB:

Net probability of vA ≤ vcorrect ≤ vB|s =

∫ B

A
s · vxdx (12)

Sections of the space can therefore be compared by computing
and comparing the integrals across different ranges. For example,
a decision maker could use their evidence state to estimate the
probability of a dot motion stimulus being oriented between 30
and 50 degrees versus between 110 and 120 degrees by eval-
uating the integral from Eq. (12) over these ranges. The upper
and lower limits of the integral would naturally compensate for
the larger range of the former, allowing the decision maker to
come up with a posterior probability of 30–50 versus 110–120
that accounted for the base rate of each one occurring.

This gives us a basis for how to evaluate the likelihood of
individual hypotheses in a continuous span, or subsets of the
continuous span of alternatives, given a particular evidence state.
It also provides an optimal mechanism for generating probability
or confidence judgments, as the position of the state in the
decision space gives the posterior probabilities of any hypothesis
or span of hypotheses that can be constructed in the space. Next,
it is important to describe how this state changes over time with
new information.

4.2. Continuous states and dynamics

When there is only a discrete set of alternatives, describing
how the state changes over time can be dealt with by assigning
probabilities to each of the alternatives to specify the likelihood
of stepping in the different corresponding directions. With a
large number of alternatives, specifying all of the probabilities
is cumbersome. Instead, to specify the dynamics of the state in
a multidimensional space, one can simply specify a probability
distribution over a continuous span of step directions. In this
case, at each time point, a decision-maker takes a new piece
of information drawn from some distribution of evidence based
on the features or alternatives they are considering. This piece
of information moves them distance |ρ| (step size) in direction
φ, a random variable specified by the sampling distribution. The
direction and magnitude of this step changes the evidence with
respect to the available alternatives. As before, the evidence it
provides for alternative m, ∆s(m) is the angle between the step
direction vφ and the alternative vector vm, multiplied by the
magnitude of the step |ρ|.(
∆s(m)|ρ, φ

)
= |ρ|vm · vφ (13)

The angle of each step φ is the key random variable here.
If there is a discrete number of step directions being sampled,
then the distribution of samples over directions at each time step
is specified by a categorical random variable X with parameters
p1, p2, . . . , pn :

∑n
i=1 pi = 1 describing the probability of stepping

in direction d1, d2, . . . , dn at each transition, respectively. This
may not always be practical, however; discrete-direction sam-
pling process will require n parameters to describe a categorical
distribution over step directions that unfolds in continuous time.
This includes n−1 probabilities (since the last probability pn will
necessarily be 1−

∑n−1
i=1 pi) as well as the sampling rate parameter

λ for the time between samples.
In many cases it will be simpler and more parsimonious to

specify a distribution for the random variable φ over the entire

span of the n-sphere. This will be more convenient when evidence
is sampled with noise, so that stimulus information (about dot
motion, for example) favoring an orientation of 80 degrees might
actually be perceived as 83 degrees. A continuous distribution of
step directions in the model is also a more faithful representation
when stimulus information truly varies along a continuum.

Some examples of continuous sampling distributions for a
multidimensional random walk are given in Appendix B. The
particular sampling distribution and dynamics used in a model
will depend heavily on the stimulus displayed and the modeler’s
particular theory about how decision-makers sample informa-
tion from the stimulus. For example, evidence accumulating in
parallel or being sampled from multiple sources may require
a bimodal distribution or multiple evidence states/accumulators
(Kvam, 2019; Ratcliff, 2018). In other cases, deterministic dynam-
ics may be more tractable and allow us to derive simple analytic
solutions to the distributions of responses and response times as
in the linear ballistic accumulator models (Brown & Heathcote,
2008). The most common form of state dynamics used in evi-
dence accumulation are those of the continuous Brownian motion
with drift – a Wiener diffusion process in a multidimensional
space – covered next.

4.3. Diffusion on a hypersphere

One theoretically-motivated way to quantify how evidence
shifts over time is to divide the sampling distribution into com-
ponents describing signal (true stimulus information) and noise
(components describing random stimulus or perceptual varia-
tion). Each step in the accumulation process sees the evidence
state move a certain distance toward the ‘best’ response, with
some (multivariate normal) distribution around the expected lo-
cation. In this case, the dynamics can be quantified in terms of an
average drift direction describing which alternative the average
stimulus information favors, a drift magnitude describing how
quickly ‘signal’ information favoring that alternative is gathered,
and a diffusion rate describing the rate at which random noise
is sampled. The accumulation trajectories resulting from these
dynamics are shown in Fig. 7.

As the distance a person’s state moves with each new piece
of information (step size) gets very small and samples arrive
more often (δs → 0 and t → 0), the random walk pro-
cess described above approaches a continuous multidimensional
diffusion process. Such diffusion processes are well covered in
several references (see Itô, 1974; Stroock & Varadhan, 2007) and
are useful for predicting the position of the multidimensional
process in continuous time. These particular assumptions result
in a multivariate normal distribution of evidence for any time
t > 0 before the process crosses one of the response boundaries.

These evidence dynamics in combination with the n-sphere
choice boundaries are a special case of the geometric framework
that has been pursued in depth by Smith (2016) using two-
dimensional circular boundaries and Smith and Corbett (2018)
using four-dimensional hyperspherical choice boundaries. Smith
and Corbett derive analytic likelihoods for the joint distribu-
tion of responses and response times for diffusion processes
unfolding on the interior of a figure bounded by a circle or
a hypersphere. The authors show that these evidence dynam-
ics and choice rules result in a von Mises (in two dimensions)
or von Mises–Fisher (in three or more dimensions) distribution
of responses like those commonly observed in visual working
memory experiments (Zhang & Luck, 2008), and a right-skewed
distribution of response times typically found across domains of
decision making tasks (Luce, 1986).

Critically, for the choice boundaries to form an n-sphere in
the geometric framework, all response alternatives in the n di-
mensions must be available for selection, and they must all have
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Fig. 7. Diagram of example choice boundaries and evidence accumulation (diffusion) process for the circular diffusion model (Smith, 2016, left) and the geometric
framework (right) for a set of 4 alternatives.

the same threshold, θabs. This is equivalent to the absolute stop-
ping/decision rule covered in Section 3.2.1. When the set of
alternatives is not sufficient to approximate a continuum, its
predictions no longer line up with those of the hyperspherical
diffusion model. This becomes evident when we look at how the
circular/hyperspherical and geometric framework approach dis-
crete choice tasks: the stopping rules for selecting one alternative
out of a small set are quite different.

In the hypersphere model, there are separate stopping and
decision rules that trigger a decision and then sort evidence states
into responses, respectively. Whether engaging in a continuous
or discrete selection task, the decision maker’s stopping rule
is always the hypersphere (circle, in two dimensions), where
evidence accumulation halts when the sum of the squared co-
ordinates xm exceed a specified threshold; evidence accumu-
lates while

∑
j x

2
j < θabs. After this inequality is violated, the

evidence accumulation process stops and states are mapped
onto responses by dividing them into different categories as
shown in Fig. 7, left panel. The decision rule or mapping stage
is similar to the Thurstonian component of general recognition
theory (Ashby & Townsend, 1986),7 where hyperplanes divide the
multidimensional space of evidence states (points) into different
regions corresponding to different responses.

Conversely, the geometric framework uses just one set of
hyperplanes for both the stopping and decision rules. This is
shown in Fig. 7, right panel. As soon as the process crosses a single
boundary, the corresponding alternative is chosen, no matter if an
absolute or relative stopping rule is used. Therefore, the primary
difference between the two approaches to modeling selections
among discrete sets of alternatives is related to the shape of the
thresholds. Because the geometric framework uses hyperplanes
for each choice boundary rather than a single hypersphere, the
shape that the choice boundaries form in smaller sets of alter-
natives will often be a convex polytope rather than forming the
smooth boundaries of a hypersphere.

This difference will be most notable in empirical predictions
when the stimulus does not match perfectly with one of the
available response alternatives, i.e., drift direction does not cor-
respond exactly to the directions of any available alternatives.
For example, the average drift of the evidence state based on
incoming information could be between alternative C and D as
with the trajectories shown in Fig. 7. The geometric framework

7 The primary difference is that the states resulting from the evidence
accumulation process will lie along the edges of the figure that is used to specify
the stopping conditions rather than being randomly distributed.

predicts that response times in these cases will be slightly longer
than ones where the stimulus perfectly matches one of the alter-
natives in the choice set, because it will have a longer distance to
travel on average before it crosses one of the response boundaries
(right panel). By contrast, circular or hyperspherical boundaries
imply that the distance to the response boundary from the origin
is always the same, so response times should retain the same
shape and mean regardless of the degree of match between
the stimulus and available choice options (left panel). Since em-
pirical work relating continuous to multi-alternative choice is
sparse, there is currently no work that can speak directly to
these diverging predictions. However, testing these contrasting
hypotheses is certainly a promising direction for future research
aimed at understanding the evidence representations underlying
multi-alternative choice.

5. Attributes and preferences

Thus far, the decision situations and models considered have
focused primarily on inferential decisions in perceptual choice
problems. These choice scenarios are characterized by structured
representations where the similarity relations between alterna-
tives are straightforward and there is only one correct response
(signal) among incorrect ones (noise). But this covers only a
portion of the decisions people face in real life. When a decision
maker has to choose between cars, foods, or other multi-attribute
items, it will not always be immediately clear how to arrange
the options in a spatial way. Furthermore, the relative weight
or attention directed toward each feature of a choice alternative
will differ from person to person or choice context to choice con-
text. This occurs particularly often in preferential choice, where
alternatives may be arranged differently based on a person’s sub-
jective beliefs about the similarity between items in a choice set.
Individual differences in representation or evidence accumulation
translate into differences in choice behavior, so they are critical
to incorporate when constructing our geometric models.

The first hurdle when moving to preferential and multi-
attribute choice is how people are representing the alternatives
in front of them. Until now, we have taken it as a given what the
relationships between alternatives are in constructing geometric
models. In cases like motion direction, specifying the orientations
of alternatives is fairly straightforward because there is a clear
analogue between the directions of physical motion and the di-
rections associated with choice alternatives: leftward motion can
correspond to an alternative represented by a leftward pointing
vector, upward motion can correspond to an alternative with
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an upward pointing vector, and so on. But what about cases
where the relations and orientations of alternatives are not so
straightforward? The remaining problem is to take a given set
of psychological or physical attributes or similarity relations and
construct a decision space by arranging vectors of alternatives
relative to one another. Like other vector space models, this will
demand attention to the dimensionality of the representations
and a method for deriving representations from similarity or
attribute information.

5.1. Using features to construct the space

The simplest way to construct the vector space containing
the alternatives is by using some objective feature space with a
coordinate system where dimensions correspond to the feature
values. In this case, the coordinates of the vectors describing
choice alternatives directly describe their underlying features.
Next, I show how to construct these representations directly from
alternatives’ values on each of their feature dimensions.

5.1.1. Unidimensional items
A simple place to start using features to construct the vec-

tor space representation of alternatives is with unidimensional
options, which can be characterized by their value on only one
feature. Naturally, two options will be more similar if they have
a small difference in values on the feature, and less similar if
they have diverging values of the feature. The case for binary
features is quite simple; a feature value of 1 (feature present) can
be represented as a positive vector v+ = [+1] and a feature value
of 0 (feature absent) can be represented as an opposing negative
vector v− = [−1]. Alternatives defined by this single binary
feature will either be perfectly the same (v+ · v+ = v− · v− = 1)
or perfectly different (v+ · v− = −1).

Unidimensional alternatives can also have a feature that varies
along a continuum, varying from low to high on some quan-
titative scale. Since unidimensional alternatives with different
values for a single feature all lie along a common continuum,
the angles describing their similarity can also vary along a single
scale. When unidimensional alternatives A and B have an angle
φAB between them, the value of φAB corresponds to the difference
along their single feature value. A value of φAB = π (180 degrees)
will indicate alternatives with opposing feature values, such as
northward motion versus southward motion, as in Fig. 3A, while
a small value of φAB will indicate similar values on the feature, as
in Fig. 3D.

In order for the angle between alternatives to vary along a
continuum to create a scale for a feature, we must have least
2 dimensions to represent a feature. For simplicity, we can fix
one end of the feature scale, such as setting the lowest value of
the feature range to vlow = [1, 0]. Where the high end of the
scale is located will depend on the type and range of the feature.
For example, a feature like monetary value with a range of $0-
20 might vary from 0 ([1, 0]) to π/2 ([0, 1]), whereas a range of
$ −100000 to +1000000 might see the ends of the scale point
in opposite directions, varying from ([1, 0]) to π ([−1, 0]).8 The
exact range of the scale will vary based on a modeler’s theory
about how high and low values of the feature are represented
relative to one another (e.g., are they truly opposites or just

8 Work by Dodds, Rae, and Brown (2012) has actually suggested that the
ends of some scales may come back around and become more similar to one
another, creating a sort of ‘ring’ shape to the similarity between alternatives.
This is easily handled in the geometric framework by allowing angles φAB > π ,
which results in cosines to ‘‘bounce back’’ from −1 by coming back around the
opposite side of the circle for items on opposing ends of a scale (forming a sort
of horseshoe shape to the representation of the span of a feature).

ends of a range?); it can also be estimated by including a free
parameter such as φmax−min.

For features that vary along a range, each independent feature
requires two dimensions to allow the angle φ to vary with the
value of the feature. The upper and lower bounds of the range
of angles in these two dimensions serve as high and low ‘anchor’
values for a feature (a concept established in absolute identifica-
tion, see Marley & Cook, 1984), and the value of an alternative
along that feature corresponds to its angle relative to the high
and low feature value vectors. Formally, the angle φ describes a
choice alternative’s value x along a feature γ , which varies from
γmin (low anchor) to γmax (high anchor), as

φ = φmax−−min ·
x − γmin

γmax − γmin
(14)

A feature value with an angle of φ that is closer to φmax−−min
indicates it is nearer the maximum feature value γmax, and closer
to 0 indicates it is closer to the minimum feature value γmin.

Such an approach is well-suited to modeling rating judgments
in particular. Suppose a decision-maker must rate their confi-
dence in a decision from 0 to 100, for example. The span of
alternatives on the scale ranges from γmin = 0 to γmax = 100,
and the possible responses will form an arc between v0 and
v100. For example, supposing that φmax−−min = π/2, a rating
of 70 will fall at φ =

π
2 ·

70
100 , represented by vector v70 =

[cos(φ), sin(φ)] = [.454, .891]. This allows for continuous rating
scales – where all vectors v0−100 are represented in the space – as
well as discrete scales where only some subset are represented,
such as v0, v25, v50, v75, and v100. The same approach could be
applied to construct a set of alternatives in any sort of rating or
estimation task, including Likert scales, probability or frequency
estimation, numerosity, or even price judgments like willingness
to pay or willingness to accept.

5.1.2. Multidimensional items
Moving to multidimensional stimuli requires a modeler to

consider how the features are related to one another. When
all features are represented as independent and separable, our
model should use orthogonal dimensions to describe each one.
For binary features, each feature adds only a single dimension
quantifying the presence versus absence of the feature. Each
continuous feature requires two dimensions for the angle to vary
corresponding to an item’s value, as shown above in the unidi-
mensional case. Therefore, the number of dimensions required
to represent m (separable, independent) binary features and n
(separable, independent) continuous features is simply 2n + m.

The representation of a choice alternative is then set by turn-
ing the angles across all features into a set of coordinates. Each
angle gives two coordinates describing its values along the low
feature value and high feature value axes. If an alternative only
has one feature γ and an angle describing its value on that feature
φ, its coordinates are vA = [cos(φ), sin(φ)]. This row vector serves
as the description of the alternative in the decision space.

Adding independent features to this representation is simple.
For an alternative A described by a set of n independent, con-
tinuous features γ1, . . . , γn and feature values x1, . . . , xn, we can
calculate the angle with respect to feature vectors using Eq. (14).
This gives us a set of feature angles φ1, . . . φn, and the vector
describing the alternative A, vA, will have coordinates given as

vA = [cos(φ1), sin(φ1), cos(φ2), sin(φ2), . . . cos(φn), sin(φn)]. (15)

Any binary features can be added as coordinates of either
+1 or −1, adding a single dimension per binary feature. Once
constructed, the vector for each alternative can be normalized to
a vector v′

A of length 1 by setting v′

A = vA/∥vA∥.
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5.2. State dynamics with features

These representations also pave the way for different evidence
accumulation dynamics. As a person considers a particular fea-
ture, they move toward values of the feature that they prefer. For
example, if a person is considering the quality and cost of a car
as its two features, they might move toward low-cost and high-
quality cars. Supposing that φmax−−min = π/2 for all features, low
cost will be in direction vcost,low = [1, 0, 0, 0], high cost will be in
direction vcost,high = [0, 1, 0, 0], low quality will be in direction
vquality,low = [0, 0, 1, 0], and high quality will be in direction
vquality,high = [0, 0, 0, 1]. When considering cost, the person will
move toward vcost,low and when considering quality, they will
move toward vquality,high.

As in multiattribute decision field theory, we might assign
a probability or weight to each feature, which gives the like-
lihood of considering feature m at any given point in time. If
we suppose that the decision-maker considers cost half the time
and quality half the time, we might find a probability vector of
p = .5 · vcost,low + .5 · vquality,high = [.5, 0, 0, .5]. This can then
be represented either as a random walk with discrete steps or
as a continuous diffusion process; for now we just examine the
latter. The motion of the preference state s over time (ds/dt) will
be driven by the sampling rate λ, the weight vector p, and any
momentary noise in the accumulation process (σt ):
ds
dt

= λ(p + σt ) (16)

On average, the support generated for a particular alternative
A per unit time (dA/dt) will be a function of how closely alter-
native A matches this preference vector, again considering the
sampling rate (λ) and any noise in the evidence accumulation
process (σt ):
d
dt

Ev(A) = λ(p + σt ) · vA (17)

Naturally, support will accumulate fastest in favor of alter-
natives that possess features that are desirable to the decision
maker, and the state will be most likely to reach the choice
boundaries corresponding to alternatives that possess desirable
features. Functionally, this is essentially the same as the diffusion
process described by Smith (2016); the drift is simply is driven
by weighted preference for different features as in decision field
theory (Busemeyer & Townsend, 1993; Roe et al., 2001).

5.3. Estimating relations among alternatives

So far, I have only covered the simplest case where features
are fully separable and represented as independent quantities.
But again this does not fully reflect the complexity of real-world
decisions. In many cases, different features will be correlated; for
example, decision makers in a variety of choice environments
perceive and experience a trade-off between the potential payoff
of a choice and the chance of receiving that payoff (Pleskac &
Hertwig, 2014). These two features are represented as negatively
related, which should correspond to a difference in representa-
tion of feature vectors such that the features are non-orthogonal.
Furthermore, different features may carry different weight in
computing the similarity of two items. In such cases, it is more
difficult to derive the relation between features and similarity, as
this requires another layer of modeling to impute similarity in
representation from objective features.

For complex multi-attribute items, an alternative approach is
to construct a vector space based on estimating the psychological
representations of alternatives rather than using the objective
features they possess. This requires additional information about

the individual differences between decision makers and their rep-
resentations of the choice problem. For example, one could use
similarity rating data (Shepard, 1962), infer similarity from neural
data with approaches like multivariate pattern analysis (Kamitani
& Tong, 2005; Kriegeskorte, Goebel, & Bandettini, 2006; O’Toole,
Jiang, Abdi, Pénard, Dunlop, & Parent, 2007), or use binary confu-
sion data to generate a similarity matrix relating each alternative
to another. Once this is accomplished, the estimates of inter-
alternative similarity can either be fed directly into calculating
the angles between alternatives, or used in concert with multidi-
mensional scaling to construct a distance-based representation of
these alternatives in a feature space.9 The distance between items
in the multidimensional scaling representation can in turn be
mapped onto angles φij between all pairs of alternatives i ̸= j. The
form of the function mapping similarity derived from behavioral,
neural, or MDS analyses to angles is a potentially interesting topic
for empirical work, but it must at least be monotonic with its
output bounded between 0 and π .

When performed for individuals, this approach would yield
predictions about decision patterns and response times that vary
as a function of individual differences. For example, we might
expect red (R) and green (G) hues in a red-green colorblind
participant to appear similar to one another (small φRG), whereas
participants with normal vision tend to rate them as very dif-
ferent (large φRG). We would therefore expect high confusion
between red and green colors when a participant is asked to
assign a target color-based stimulus to one category or the other
(red or green), and longer response times when trying to dis-
criminate between them (if relative thresholds are used) for the
colorblind participants.

Another way to implement these relations in a geometric
model is to use singular-value decomposition [SVD] to turn the
similarities derived from ratings or multivariate pattern analysis
of neural data into low-dimensional vector space representations
of the alternatives (Deerwester et al., 1990; Furnas et al., 1988;
Landauer & Dumais, 1997). The resulting vector space of alter-
natives (used in place of the usual concepts in latent semantic
analysis) gives us the angle φij for all i ̸= j among choice alter-
natives. Such an approach has been pursued with some success
by Bhatia (2017): singular value decomposition based on latent
semantic analysis was able to construct a vector space represen-
tation of alternatives that was predictive of the choices people
made. Supplementing this vector space model with a dynamic
evidence accumulation process forms a more complete picture
of how people make decisions given the associations they have
previously learned.

5.3.1. Negative features and rejection boundaries
If each feature of an item is represented as a balance between

high and low feature values where φmax−−min =
π
2 , alternatives

with objective feature values can be represented in the first
orthant of a Cartesian coordinate space (positive values along all
dimensions). However, this is not necessary. In some decision
situations, the best representation of available alternatives may
make use of the full manifold on which alternatives can be sit-
uated. Negative values along a dimension correspond to features
that have coherent opposites: opposing directions (north-south,
up-down, left–right, etc.), gains versus losses, or opposing color
pairs (yellow-blue, red-green) would be represented in opposing
directions v and −v.

The hue color wheel is a good example of this. Colors can be
arranged such that colors with opposing hues are situated across

9 As is typically done, multidimensional scaling representations with varying
numbers of dimensions can be subjected to a model comparison to determine
how many dimensions is optimal for a given set of alternatives
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from one another, resulting in a circular arrangement of hues (see
Hurvich & Jameson, 1957; Shepard, 1962). Although the psycho-
logical representation of these colors is slightly different than the
hue metric and colors can be represented in different coordinate
systems that better reflect perception (Tkalcic & Tasic, 2003), it
seems that blue / yellow and red/green are often situated across
from one another, providing natural opposing choice alternatives
in color hue-based selection tasks. Clear examples also exist in
2- or 3-dimensional motion and orientation tasks: rightward op-
poses leftward, forward opposes backward, and upward opposes
downward.

This provides opportunities for rejecting alternatives as in
Section 2.2: if an alternative A is too low on a certain feature, the
state may move away from it and cross the boundary θ− in direc-
tion −vA. At this point, alternative A is eliminated from the choice
set and the space of alternatives is simplified as in elimination
by aspects (Tversky, 1972). This can reduce the dimensionality of
the representation of remaining alternatives when the remaining
options vary on fewer dimensions (for example, if the remain-
ing alternatives all match on cost when an expensive option is
removed).

5.4. Context effects

In ideal circumstances, multidimensional scaling or singular
value decomposition this can provide an immense simplification
of the choice problem for both decision-makers and modelers. For
example, in the case where two features are perfectly correlated,
alternatives can be represented in just two dimensions rather
than four, as high values of one feature will correspond perfectly
to high (or low, if the correlation is perfectly negative) values
of the other features. The relationships between alternatives will
therefore depend on the items in the choice set — if there are
four features but only three alternatives, the decision space can
be reduced into a three-dimensional representation. Critically, the
resulting three-dimensional representation will depend on the
particular alternatives available and their features. For example,
if all the alternatives share a feature (e.g., the same cost), the two
feature dimensions can be collapsed into one dimension because
that feature is non-discriminating for that choice scenario.

As a result, this approach can yield context effects based on
the features of items included in the choice set. For example, the
work of Tversky (1977) showed that the distribution of selections
between pairs of items in a set depended on the third alternative
(‘Which country is most similar to Austria?’’ when the options
were Sweden/Norway / Hungary versus Sweden/Poland / Hun-
gary), resulting in a violation of independence from irrelevant
alternatives [IIA] assumption made by many axiomatic theories
of decision making. Tversky postulated that this was because the
relevant features associated with Norway – as opposed to those
associated with Poland – resulted in different attributes being
involved in constructing representations of the other countries in
the set. This same idea is reflected in the geometric framework:
as the alternatives in the set change, the space of features most
relevant to the available options also changes by virtue of how
the space is collapsed into lower dimensional representations. In
turn, this changes the weight of each feature based on the avail-
able choice alternatives in a set. This effect therefore provides a
structural explanation for violations of IIA and diagnosticity in
these paradigms. A proof of this is provided next.

Introducing additional alternatives or removing alternatives
may change a person’s anchors for feature values as well — for
example, introducing a very high cost/low quality alternative may
make the other alternatives seem lower in cost and higher in
quality or even change the attributes that the decision-maker
is attending. This range effect results in context dependence

between alternatives in choice sets across many domains like
risky choice (Birnbaum, 2008), single attribute (Braida & Durlach,
1972; Lockhead, 2004; Marley & Cook, 1984) and multiattribute
judgments (Mellers & Cooke, 1994; Trueblood, Brown, Heathcote,
& Busemeyer, 2013), and especially consumer choice and pric-
ing (Cunha Jr & Shulman, 2010; Hutchinson, 1983; Janiszewski
& Lichtenstein, 1999). Range and other context effects are there-
fore an important feature for a model of preferential choice to
handle. In Appendix B, I provide a simple geometric model that
produces similarity, decoy, and compromise effects to illustrate
how mechanisms within the geometric framework can be lever-
aged to produce these interesting phenomena. This material is
somewhat tangential to the main point, however, which is that
context effects are naturally produced by the principles I de-
scribed above. In the next section, I provide a proof that singular
value decomposition results in context effects in the geometric
framework.

Proof of context effects. We want to prove that the rela-
tive support generated for alternatives A and B differs between
when they are presented alongside alternative C versus presented
alongside alternative D, due to the differences in singular value
decomposition resulting from sets A, B, C and A, B,D. Recall that
in the geometric framework, the weight vector p describes the
weight attached to each feature dimension, giving the average
support generated for alternatives that have that feature. The
average amount of support per unit time generated for each
alternative based on this weight vector is given in Eq. (17): the
average support generated for A is given by p · vA, the support
generated for B is p · vB, and so on. Suppose that p is the
attention weight vector representing the average motion of the
state in four dimensions, p′

ABC is its value when collapsed into
three dimensions using singular value decomposition of A, B, C ,
and p′

ABD is its value when collapsed into three dimensions using
singular value decomposition of A, B,D. The goal of the proof is
to show
v′

A · p′

ABC

v′

B · p′

ABC
̸=

v′

A · p′

ABD

v′

B · p′

ABD
(18)

where v′

A is the new vector for alternative A following decom-
position and v′

B is the new vector for alternative B following
decomposition.

To perform singular value decomposition on a set of four-
dimensional vectors vA, vB, vC (which describe alternatives A, B,
and C), we first create a 3 × 4 matrix where each vector is a row,

MABC =

[
vA
vB
vC

]
(19)

Because there are more dimensions/columns (4) than vec-
tors/rows (3), there exists a linear span of the set of vectors,
referred to as SABC = Span(MABC ). The span SABC is sufficient
to describe the set of alternatives and preserve all similarity
relations between them, because it contains all of the linearly
independent vectors needed to describe the set of alternatives.
Singular value decomposition is a method for computing a set
of vectors in fewer dimensions (in this case, 3 dimensions) that
preserve all of the internal relations between the original set
(vectors in 4 dimensions) by using this span.

The singular value decomposition of MABC is given as MABC =

UCΣCV−1
C (simplifying our notation to C rather than ABC , since A

and B are always in the choice set). The−1 indicates the inverse
of a matrix. The rows of the matrix UC represent a linearly
independent set of vectors that covers the range of alternatives in
the set. If all alternatives are linearly independent (i.e., if none of
them can be thought of as linear combinations of one another,
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such as northeast motion is a combination of northward and
eastward motion), each one will be represented as a row of UC .

Once the relation between MABC and UC is established, we
can take any vector in the decision space ℜ

4 and map it into
the new decision space ℜ

3 using the same transformations. For
example, we can take the vector p specifying the weight assigned
to each dimension in the four-dimensional space and examine the
resulting weight p′

ABC of each dimension in the three-dimensional
space.

p′

ABC = pVCΣ
−1
C,right (20)

Here, V is the inverse of V−1, and Σ−1
C,right is the right inverse

of Σ , ΣΣ−1
C,right = I3. Once this is done, we have a new vector pABC

that specifies the evidence accumulation in ℜ
3 under the singular

value decomposition of MABC . We can easily calculate the rate of
accumulation for A, B, and C by multiplying p′

ABCU
−1
C (the inverse

of UC ), provided A, B, and C were linearly independent in the first
place. If they are not linearly independent, a vector vC that was
‘lost’ in the decomposition can be calculated as v′

C = vVCΣ
−1
C,right ,

then take the dot product p′

ABC · vC to calculate its resulting
support. The rows of the resulting vector sABC = p′

ABCU
−1
C will

give the new rate of evidence accumulation in favor of A, B, and
C in the lower-dimensional space.

As with set A, B, C , one can perform a similar singular value
decomposition for set A, B,D. As we before, this will take a matrix
MABD and decompose intoMABD = UDΣDV−1

D . The resulting weight
vector can be calculated as p′

ABD = pVDΣ
−1
D,right , and the support

generated for each alternative is given as p′

ABDU
−1
D .

Putting the two decompositions together, we can compare
the support generated for A and B as the first two entries of
p′

ABCU
−1
C and p′

ABDU
−1
D . The support generated for A, B, and C is

sABC = pVCΣ
−1
C,rightU

−1
C , while the support generated for A, B, and

D is sABD = pVDΣ
−1
D,rightUD−1. To calculate the relative support for

A and B, we can either divide the first entry of the resulting matrix
by its second entry, or calculate them individually and compare
them. Substituting the result into Eq. (18), we find

(pVCΣ
−1
C,right ) · (vAVCΣ

−1
C,right )

(pVCΣ
−1
C,right ) · (vBVCΣ

−1
C,right )

(21)

which will not be equal to

(pVDΣ
−1
D,right ) · (vAVDΣ

−1
D,right )

(pVDΣ
−1
D,right ) · (vBVDΣ

−1
D,right )

(22)

The matrices VD and VC are just rotations in four dimensions
that preserve all internal dot products, so they do not directly
affect the balance of support for A and B. The key is how they
interact with Σ−1

C,right and Σ−1
D,right , which are both projectors that

reduce the state from four dimensions to three dimensions. In
singular value decomposition, the rotation VC or VD moves the
vectors describing alternatives (vA, vB, vC , and vD) such that their
last coordinate will become zero, making their overall length
unaffected by the projection operators. However, this is not true
for the effect on p because it is not considered in computing
the decomposition so its last coordinate will not be zero when
rotated. When Σ−1

C,right is applied to pVC , it will have a different
effect than when Σ−1

D,right is applied to pVD because a different
coordinate will be affected by the projection. As a result, p will
wind up generating different support for A and B dependent on
whether Σ−1

C,right (in case ABC) or Σ−1
D,right (in case ABD) is applied.

To illustrate this point, it is helpful to provide an example. Let
us suppose that vA = [

√
.8,

√
.2, 0, 0], vB = [

√
.2,

√
.4,

√
.2,

√
.2],

vC = [0, 0, 1, 0], and vD = [
√

.5,
√

.5, 0, 0]. Additionally, for
simplicity, let us assign equal weight initially to all dimensions,

p = [.5, .5, .5, .5] (note that ∥p∥ = 1, and the lengths of all
alternative vectors are also 1). Before decomposition. Our initial
matrices are

MABC =

[
vA
vB
vC

]

MABD =

[
vA
vB
vD

]
Applying singular value decomposition, we obtain matrices for

UC , ΣC , and VC .

MABC =

[
vA
vB
vC

]
= UCΣCV−1

C

=

[
−.59 .55 .59
−.71 0 −.71
−.39 −.84 .39

][1.35 0 0 0
0 1 0 0
0 0 .43 0

]

×

⎡⎢⎣−.63 .49 .50 .35
−.53 .25 −.42 −.69
−.52 −.84 .17 0
−.23 0 −.74 .63

⎤⎥⎦
Calculating the weights for the features in three dimensions

as p′

ABC = pVCΣ
−1
C,right , we find p′

ABC = [−.71, −.05, −.58].
Conversely, the decomposition for set A, B,D is

MABD =

[
vA
vB
vD

]
= UDΣDV−1

D

=

[
−.58 .49 −.65
−.54 −.83 −.14
−.61 .27 .75

][1.61 0 0 0
0 .60 0 0
0 0 .21 0

]

×

⎡⎢⎣−.74 .42 −.52 0
−.64 −.20 .74 0
−.15 −.62 −.30 −.71
−.15 −.62 −.30 .71

⎤⎥⎦
The resulting weight vector p′

ABD is [−.52, −.86, −.89]. With
both decompositions computed, the average evidence for A, B,
and C under decomposition A, B, C can be computed as sABC =

p′

ABCU
−1
C = [0.05, 0.92, 0.09]. The average support for A, B, and

D under decomposition A, B,D is given as sABC = p′

ABCU
−1
C =

[0.46, 1.12, −0.59]. To complete the comparison, we compute
the ratio of support for A and B under ABC as .05/.92 = .0543
and the ratio under ABD as .46/1.12 = .4107. The difference in
this ratio gives us the context effect from the decomposition. This
is obviously an extreme example, but hopefully it illustrates how
substantial the effect of decomposition can be.

Interestingly, a side effect of this transformation is that the
resulting p′ will also have a different length depending on the
alternatives used to compute the decomposition. Thus, not only
will the relative support for A and B depend on whether they
are decomposed using ABC or ABD, but the total support for all
alternatives ∥p′

ABC∥ and ∥p′

ABD∥ will also depend on the choice
set. It is an open question whether p′

ABC and p′

ABD should be
normalized; if not, then response times should actually change
as a function of the third alternative in a choice set. The inclusion
of C versus D could make the decision overall slower or faster
because it changes the rate of information sampling.

In simple terms, the result of the decomposition of the de-
cision space is that it re-weights different features according
to the alternatives in the choice set. This alters the sampling
vector p that describe the emphasis a person puts on the different
dimensions of the original higher-dimensional space, resulting in
a revised sampling vector p′ for different sets of alternatives. As
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a result, the support generated for each alternative depends on
the other alternatives in the set. This can result in violations of
independence of irrelevant alternatives and diagnosticity, just as
re-weighting features in the attribute weighting model of Tversky
(1977) produces these effects.

6. Discussion

As shown, the geometric framework provides methods for
modeling choice behavior in both inferential and preferential
choice, offering tools for constructing models where objectively
optimal behavior might be expected as well as scenarios where
choice is entirely subjective. It connects binary and multialterna-
tive choice to asymptotic cases where responses can fall along a
continuum, providing a natural explanation for Hick’s law when
relative stopping rules are implemented. The geometric frame-
work also emphasizes the importance of representing the rela-
tionships between alternatives as part of a decision model, and
presents a simple way for integrating these relationships into our
models of the decision process. In preferential choice, the frame-
work provides a way to inform models of the decision process
with representational models using methods like singular value
decomposition, which in turn provides a potential mechanism
explaining context effects.

As part of this approach, the geometric framework also allows
for decision models to be related to neural data and processes.
Like the leaky competing accumulator model (Usher & McClel-
land, 2001), it includes inhibitory and excitatory connections
between different alternatives (although these do not result in
the same nonlinear dynamics because the inhibition and exci-
tation relations are passive rather than active; see Fig. 3) and
accumulation-to-threshold as two of the primary mechanisms
underlying decision dynamics. It even prescribes decision rules
for making optimal decisions in light of these interactions be-
tween alternatives. Using multivariate pattern analysis of neural
data may even allow us to construct the decision space a pri-
ori, using the similarity in neural representations of alternatives
to generate similarity-based representations of alternatives for
making behavioral predictions.

Despite this array of applications, there are a number of out-
standing issues in the framework. These include theoretical issues
like where the geometric approach can and cannot be used (in-
cluding conditions for falsifiability) as well as practical ones like
how computationally tractable the representations and dynamics
will be.

6.1. Theoretical considerations

The geometric framework allows for modeling of responses,
judgments, and response times among any number of alternatives
with varying assortments of similarity relations and underlying
feature structures. It is intentionally quite flexible in order to
allow it to be applied across choice domains, but constructing
a model using the geometric framework is often quite straight-
forward and principled. A modeler expresses the assumptions
going into their model by specifying the multidimensional space
of alternatives, the sampling distribution, and the system(s) of
equations that map states onto responses. Working within these
assumptions, there are a few ways to theoretically rule out its
mechanisms as plausible explanations of behavior.

The main theoretical limitations concern where the geometric
approach will be able to be applied. The psychological theory
built into the modeling architecture we have described here relies
heavily on the specification or calculation of angles between vec-
tors (describing alternatives) and distances along those vectors. It
therefore requires a Riemannian metric on a manifold to describe

the relations between preference or evidence states and the al-
ternatives that can be chosen. This makes it more convenient to
apply to alternatives that have attributes measured in Euclidean
metrics (e.g. quantitative values along a dimension) or a Hilbert
space.

Interestingly, the geometry of neural representations has been
considered in terms of simplices Reimann, Nolte, Scolamiero,
Turner, Perin, Chindemi, Dlotko, Levi, Hess, and Markram (2017)
like the ones constructed in the initial optimal models, and there
are a number of avenues to draw connections between the neural
data and the geometric structure ascribed to behavioral data.
However, it may not be the case that the geometry of neural rep-
resentations is restricted to manifolds in the same way. Finding
neural structures that suggest alternatives are not represented
on a Riemannian manifold could potentially require an extensive
revision of the geometric framework.

Unless cases are found where a Riemannian manifold is ruled
out, the geometric framework can in principle be used for con-
structing representations of choice alternatives and evidence.
Discrimination therefore happens at the level of psychological
theory that is built into the geometric model: how alternatives
are arranged, what sampling distributions are used, and what
response rules are applied. The specification of these components
constitutes testable hypotheses about the decision process, and
model comparison can be done by contrasting different imple-
mentations of the framework. The types of models that can be
implemented are partly restricted by computational considera-
tions, which leads to a number of practical issues in the geometric
framework.

6.2. Practical considerations

One of the more noticeable consequences of the optimal mod-
els presented in the first section is that the number of dimensions
require to represent the alternatives increases linearly with the
number of alternatives. This can make it impractical to derive
predictions when the number of alternatives gets large. One way
to get around this problem has already been covered: restricting
the model to lower-dimensional representations by using mul-
tidimensional scaling or singular value decomposition will help
reduce the dimensions needed to represent the alternatives. This
will be most powerful when a modeler has a strong theory about
the number of dimensions needed to represent the alternatives
in their choice set, and of course model comparison will help ar-
bitrate between representations or decision models with varying
numbers of dimensions.

6.2.1. Tractable likelihoods
Perhaps the greatest hurdle to utilizing some of the geometric

models is the lack of closed-form solutions to the likelihood
functions giving the choice probabilities and response time dis-
tributions as a function of the model parameters. Some partic-
ular combinations of sampling distributions and response rules
will have analytic likelihoods, such as the von Mises or von
Mises–Fisher distributions resulting from diffusion inside circu-
lar or spherical choice bounds (Smith, 2016; Smith & Corbett,
2018). These likelihoods are extremely convenient when they
can be used, but shifts in the start point or irregularly-shaped
(non-hyperspherical) response boundaries can result in situations
where they cannot be used.

Instead, many of the models I presented here will require
simulation methods for generating approximate likelihood func-
tions. These work by taking a set of parameters, generating a
set of simulated trials (e.g., 10,000 simulations), and estimating
the joint distribution of responses and response times from the
simulated sample using methods like kernel density estimation
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Fig. 8. Equivalent geometric and multiple-LBA representations of a decision.
Note that the rates and starting points in the LBA will be correlated according
to the relative orientations of the alternative vectors (d1=5).

(for Bayesian methods along these lines, see Holmes, 2015; Turner
& Sederberg, 2012). This approximate likelihood method will
often be necessary when response boundaries form irregular fig-
ures, the starting point of evidence accumulation is not centered
at the origin, and where multiple alternatives with asymmet-
ric similarity relations are involved (due to the unusual shapes
formed by the response boundaries).

6.2.2. Deterministic dynamics
Using models that have deterministic evidence evolution (such

as linear ballistic accumulators Brown & Heathcote, 2008) will
alleviate the problems associated with simulated likelihoods im-
mensely, as a random variable does not need to be drawn for each
step of the accumulation process as in multinomial or diffusion-
based stochastic dynamics. The description thus far of the sam-
pling process has been characterized by independent samples of
evidence drawn with noise at each time step of the random walk
or diffusion process.

Removing the within-trial noise associated with the random
walk can potentially make geometric models much easier to work
with, resulting in deterministic accumulation like that of the
linear ballistic accumulator model (Brown & Heathcote, 2008;
Rouder, Province, Morey, Gomez, & Heathcote, 2015). In this
model, the trajectory of evidence accumulation is a ray directed
at an angle drawn from a probability distribution, making it com-
putationally convenient to derive where the trajectory hits choice
boundaries. Using the geometric framework, we can simply find
the points of intersection between the ray trajectories generated
by a multidimensional ballistic accumulation process and the
choice boundaries that correspond to the set of alternatives. Spec-
ifying the multidimensional ballistic accumulators is relatively
straightforward; it requires a distribution of starting points in n
dimensions, a direction of accumulation (e.g., a mean direction
plus variability), and a rate of accumulation or distribution of
rates along the various dimensions of accumulation

For example, one might suggest a rate of accumulation r1 ∼

Normal(µ1, σ1) along feature 1 in direction v1, and a rate of
accumulation r2 ∼ Normal(µ2, σ2 along feature 2 in orthogonal
direction v2. The starting points vary along the same dimensions,
so that there is a starting point along feature 1 s1 ∼Uniform(0, a1)
and a starting point along feature 2 s2 ∼Uniform(0, a2). The angle
of accumulation between v1 and v2 would be φ = tan−1(r2/r1)
and the overall rate of accumulation would be rtotal =

√
r21 + r22 .

The point at which this accumulation process crosses the re-
sponse boundaries (hyperplanes orthogonal to vA, vB, . . . in an
absolute stopping rule model, or ones defined by the difference
between alternatives for relative stopping rule) gives the re-
sponse, and the time at which it crosses the first boundary yields
a response time.

This accumulation process, for a set of alternatives vA−E , is
shown in Fig. 8. Interestingly, the multidimensional geometric

representation of a linear ballistic accumulation process is equiv-
alent to a multiple accumulator model with correlated rates and
starting points. For alternatives A, B, . . . in directions vA, vB, . . .,
the starting point of accumulator n is determined by the com-
ponent of the starting point [s1, s2] along vector vn. The rate of
accumulation in favor of alternative n is the component of the
drift vector [r1, r2] along vn. This allows us to derive a starting
point and drift rate distribution for a set of alternatives based on
the starting point and rates of the multidimensional, geometric
model. These rates and starting points will naturally be correlated
according to the relationships between alternatives and features
(dimensions), as the starting points and drift rates of each accu-
mulator are all derived from the same underlying parameters r1,
r2, s1, and s2.

Of course, a similar representation of evidence could be de-
rived for each alternative in a stochastic accumulator model as
well — the rate of accumulation (and noise) for each stochas-
tic accumulator is given by the differential equation shown in
Eq. (17). In either case, the deterministic dynamics will sim-
plify the model relative to stochastic dynamics when it comes
to simulation-based likelihoods, and may prove to be a more
practical approach to implementing geometric models in the long
run.

6.3. Conclusions

The geometric framework developed here has a multitude of
potential applications, and provides a principled way of building
evidence accumulation models for small or large sets of alterna-
tives. In principle, it can be used to explain and predict selections
among any set of choice alternatives that can be represented
on a Riemannian manifold. In most cases, the primary hurdle
is constructing the decision space that relates the alternatives
to one another. Research in some domains has already mapped
this structure — for example, pitches and tones one can select
are often modeled as toroidal or helical shapes (Lerdahl, 2004;
Shepard, 1982). We might reasonably expect that a decision space
where someone has to select (or produce) a pitch or tone should
reflect these psychological representations, both in terms of what
errors they make and how quickly they are able to reach their
decisions. This is only the tip of the iceberg — any domain
in which the psychological relations between alternatives can
be empirically estimated is a domain in which the modeling
framework can in principle be applied to predict decisions among
them.

Like its predecessors, such as diffusion models, the geometric
framework also provides a link between decision behavior and
underlying neurobiology (O’Connell, Shadlen, Wong-Lin, & Kelly,
2018). The cosine rule that quantifies the association between
two alternatives (Eq. (2)) naturally relates to shared activation
or inhibition between feature dimensions or alternatives. And as
illustrated above, it can implement an optimal decision procedure
that is thought to be carried out via computations in the cortex
and basal ganglia (Bogacz, 2007; Bogacz & Gurney, 2007). The
multidimensional state additionally allows us to represent how
widespread activation across populations of neurons, which are
not inherently associated with a single particular choice outcome,
gives rise to degrees of support for a set of choice options through
its component-based associations (Ma, Beck, Latham, & Pouget,
2006; Niwa & Ditterich, 2008).

My hope is that the material presented here serves as a use-
ful tool for constructing models of the decision process across
domains, including binary and multiple choice, ordinal ranking
judgments, best–worst selections, categorization, ratings like Lik-
ert scales, and numerical judgments like confidence, estimation,
and price. The geometric framework serves as a general case that
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Fig. 9. Parameters and shapes of von Mises and von Mises–Fisher distributions. The von Mises–Fisher distribution can be specified in arbitrarily many dimensions,
but its 3-dimensional structure is shown for reference.

brings multiple models together in the same umbrella, connects
these models to neurobiology, and provides a method for con-
structing new models of the decision process that are sensitive
to the alternatives contained in a choice set.

Appendix A. Continuous distributions for sampling

Although they result in convenient likelihoods in many cases,
the diffusion dynamics described in Eq. (17) may not perfectly
match the perceptual information provided by every stimulus.
When there is a substantial mismatch or unusual properties
to a stimulus (such as bimodal distributions or correlated di-
mensions), it may be more prudent to construct a sampling
distribution that reflects the properties of a stimulus. In this
case, a modeler must define evidence dynamics in terms of a
probability distribution over step directions (what is sampled and
how it relates to orientations in the decision space) and the rate
at which samples arrive. The sampling distribution has to cover
a potentially high-dimensional space, as evidence accumulation
must unfold in the same number of dimensions as the decision
space.

For a two-dimensional continuous sampling distribution, one
convenient candidate for the distribution of φ (step direction) is
the von Mises distribution φ ∼ VM(µ, κ), which is similar to
a normal distribution wrapped around a circle (Mardia, 2014;
von Mises, 1918). The distribution of φ over possible directions
x given its parameters κ and µ is given by the probability density
function:

Pr(φ = x|µ, κ) =
exp

(
κcos(x − µ)

)
2π I0(κ)

(23)

The von Mises distribution has two parameters: µ, which
specifies the direction of the central tendency of the samples; and
κ , which specifies the precision of the samples (the inverse of the
variance). Higher κ indicates more tightly concentrated samples,
and lower κ indicates ones that are more spread out over the
circle. In the case of alternative or attribute wise sampling, these
can be interpreted as the average attribute or alternative a person
favors (specified by direction µ) and the noise or variation around
it (1/κ). As κ decreases toward zero, the von Mises distribution
approaches a circular uniform distribution, where steps in all
directions are equally likely. The von Mises distribution can be
simulated efficiently, so drawing many random variables from
this distribution to predict the dispersion of responses on a circle
is not too computationally demanding (Best & Fisher, 1979).

When the representations of alternatives uses a higher num-
ber of dimensions, the sampling distribution will have to change
appropriately. For example, a stimulus providing evidence in 3
or more dimensions might be better characterized by a von
Mises–Fisher distribution φ ∼ VMF (µ, κ, ν), which specifies the
dispersion of vectors on an n-sphere (Banerjee, Dhillon, Ghosh, &
Sra, 2005; Fisher, 1953; Watson & Williams, 1956).

Pr(φ = x|µ, κ, ν) =
κν−1

(2π )ν Iν−1(κ)
eκµ·x (24)

Similar to the von Mises distribution, this sampling distri-
bution has a central tendency µ – described by an (n − 1)-
dimensional vector using spherical coordinates – that specifies
the modal direction of the samples. It also has a similar concen-
tration parameter κ that specifies the precision of the samples;
higher values of κ mean it will move more consistently in directly
µ, lower values mean it will move around more randomly. The
von Mises–Fisher distribution also adds another parameter ν
that simply allows it to adapt to the number of dimensions: its
value is ν =

n
2 where n is the number of dimensions in the

representation/decision space.
This allows the von Mises–Fisher distribution to be used to

specify a sampling distribution over any n-sphere, making it
convenient for modeling decisions among many alternatives that
have many features or dimensions underlying their representa-
tions. It might be used to describe an object moving in three
dimensions or a choice option with many attributes. For ex-
ample, a decision among many different cars might use di-
mensions for price, longevity, handling, acceleration, physical
appearance, color, and so on that contribute to high-dimensional
representations.

The probability density functions for the von Mises and von
Mises–Fisher distributions are given in Eqs. (23) and (24) respec-
tively, and depicted in Fig. 9. The function Im() is a modified Bessel
function of the first kind, order m, which frequently appear in
circular statistical distributions that need to wrap where 0 and
2π meet.

Fortunately, the sampling rate gets no more complex as the
number of dimensions involves increases. The arrival time of
each piece of evidence/step in the accumulation process can still
be described by a fixed increment t or an exponential distribu-
tion t ∼ Exponential(λ), just as it is in other continuous-time
models. Not all of the parameters of the distribution will be
simultaneously meaningful, though – a lower sampling rate with
higher precision and a lower threshold may give the exact same
results as one with a higher sampling rate, lower precision, and
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Fig. 10. Asymmetric probability distribution on a sphere. Red indicates the most
likely directions, with yellow, green, and blue indicating progressively less likely
directions for each sample to move the evidence state . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

higher threshold (and matched mean direction). Therefore, the
parameters have to be either constrained across conditions or
fixed within a condition in order to set their scale, just as with
diffusion and accumulator models.

A.1. Asymmetric distributions

One drawback of using the von Mises–Fisher distribution
described in Eq. (24) is that it has the same level of variability
along all dimensions; it cannot have greater noise in the represen-
tation of one feature relative to another. This means that the state
will be symmetrically distributed around the mean accumulation
direction when it reaches a specified distance from the starting
point (i.e. with spherical response boundaries).

This assumption is often reasonable, but may not make sense
for all decision situations. When selecting ingredients to put into
a meal or drink, a person may prefer to have items that match
in temperature — for example, they may have a meal made of
all cold ingredients or all warm ingredients, but not mix warm
with cool. In a three-dimensional space where azimuth angle
corresponds to the temperature of one ingredient and horizon
corresponds to the temperature of another, the preferred com-
bination will be a diagonally oriented distribution like the one
shown in Fig. 10.

With only a von Mises–Fisher distribution for sampling, a
modeler cannot generate this pattern of responses because the
samples would be forced to be symmetric. Instead, some way of
implementing a distribution that looks like a multivariate normal
rather than a symmetric normal wrapped around a sphere. There
is a generalized version of the von Mises–Fisher distribution that
does this called the Fisher–Bingham distribution (Mardia, 2014),
but a more frequently used (and mathematically convenient)
distribution is the Kent distribution (Kent, 1982). This distribution
describes a probability density function over three-dimensional
vectors x on the 3-sphere using five parameters γ1−3, κ , and β .

Pr(φ = x|γ1, γ2, γ3, κ) =
1

c(κ, β)

· exp
(
κγ1 · x + β[(γ2 · x)2 − (γ3 · x)2]

)
(25)

The term c(κ, β) is a normalization constant:

c(κ, β) = 2π
∞∑
j=0

Γ (j + .5)
Γ (j + 1)

β2j
( 2

κ

)2j+.5
I2j+.5(κ) (26)

As before, Γ is the gamma function and I2j+.5() is the modified
Bessel function of the first kind, order (2j + .5). The parameters
γ are three orthogonal unit vectors. The first, γ1, specifies the
mean direction of accumulation (mean orientation); the second,
γ2, specifies the major axis along which responses are dispersed

(i.e., the direction along which the distribution will be stretched);
and the last, γ3 specifies the minor axis along which responses
will be normally dispersed. As in the vMF and vM distributions,
the parameter κ controls the general precision (inverse variance)
of the distribution, while β controls how elliptical/asymmetric
the noise is on the major relative to the minor axis.

The Kent distribution can be extended to higher dimensions
as well. For each additional dimension n, there will need to be
an additional vector γn specifying another axis along which the
distribution can be stretched, and an additional parameter β that
specifies how widely the distribution is stretched along that axis.
In this way, it functions very similarly to a multi-variate normal
distribution. the full probability density for the random direction
variable φ pulled from an n-dimensional Kent distribution is

Pr(φ = x|γ1, γ2, γ3, β, κ) =
1

c(κ, β)

× exp
(
κγ1 · x − (

n∑
i=2

βi)(γn · x)2 +

n−1∑
j=2

βj(γ2 · x)2
)

(27)

The normalizing constant c(κ, β) acts as a multiplier that
simply scales the probability density according to the β and κ
parameters. The β parameters are subject to the restrictions κ

2 ≥

|β|≥ 0 and
∑n

j=2 βj = 0.
Applied to our example of ingredient matching, we might

expect that the mean accumulation direction is toward γ1 =

[1, 0, 0], indicating no strong preferences for warm or cool ingre-
dients. The major axis would be something like γ2 = [0,

√
.5,

√
.5],

creating a line from cool, cool (low values of y and z) to warm,
warm (high values of y and z). This would be the axis along which
the distribution would be wider dependent on the value of β , and
thinner along the remaining minor axis γ3 = [0, −

√
.5,

√
.5].

Then the parameter κ would control how widely the selections
were dispersed across directions.

The von Mises, von Mises–Fisher, and Kent distributions rep-
resent only a handful of potential distributions over step angles.
Multinomial or other multidimensional distributions may prove
useful in modeling stimuli with unusual evidence properties. In
some cases, it may also be reasonable to have multiple accumula-
tion processes running at the same time, which seems to be im-
portant for predicting multimodal response distributions (Kvam,
2019; Ratcliff, 2018).

Appendix B. A simple model of context effects

At this point it is critical to note that context effects are
permitted in the framework in principle by virtue of its ability
to violate IIA and diagnosticity, as shown in the proof in the
main text. This will yield context effects merely by the particular
decomposition of the feature space for a set of alternatives, which
generates different weights on different features depending on
the choice set. The toy model of context effects I describe in this
section is mainly to demonstrate how a simple geometric model
can generate several of the most common context effects. It is not
intended to be construed as a new competitor to existing models;
rather, it is likely that equivalence relations or simple modifi-
cations of the geometric framework will generate models that
behave like the multiattribute linear ballistic accumulator (MLBA
Trueblood et al., 2014), 2N-ary choice model (Wollschläger &
Diederich, 2012, 2017), multialternative decision field theory (Roe
et al., 2001), the leaky competing accumulator model (Usher
& McClelland, 2001), and other models that generate context
effects. The geometric framework would therefore be a general
case of several implementations that can create the effects in
principle, and particular theories instantiated as special cases
of the geometric framework can be compared in terms of the
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particular mechanism they posit for each effect or combination
of effects.

The toy model presented here assumes that each alternative
has two features that can vary continuously. First, we relate the
response alternatives to one another. Each alternative possesses
a value along each of the feature dimensions, and the initial
choice alternatives’ values are negatively correlated (i.e. one is
high on dimension 1 and low on dimension 2, the other is low on
dimension 1 and high on dimension 2). Alternative A is therefore
represented by a vector that has a high x value (dimension 1)
and low y value (dimension 2) as vA = [1, 0], and alternative B
is initially represented by a vector with a low x value and high y
value as vB = [0, 1].

Next, we specify the sampling distribution. In this example,
assume that a decision-maker values an item that is high on di-
mension 1 and high on dimension 2 equally.10 When considering
dimension 1, this valuation moves their preference state right-
ward on average, and when attending to dimension 2 it moves
their preference state upward on average. The net movement of
this state – putting together rightward movement, upward move-
ment, and noise – will be toward the upper-right. We therefore
model it as a diffusion process with mean drift in direction µ =

π
4

radians (45 degrees). The precision of the sampling distribution is
set to κ = 1 to set the scale of the process.

Finally, the response boundaries are formed by specifying a
line tangent to each of the alternative vectors at height θ = 2
(again, arbitrarily chosen). This will result in the equation x ≥ 2
as a rule for selecting alternative A, and y ≥ 2 as the rule for
selecting alternative B. Put together, this will result in roughly
50% of responses favoring A and 50% favoring B, as shown in the
top panels of Fig. 11.

B.0.1. Similarity
So how do we get context effects by introducing a third alter-

native? The three effects are shown in Fig. 11. The similarity effect
is perhaps the most straightforward, so it provides a good starting
point. Suppose that we introduce a third alternative C with at-
tributes similar to alternative B. The typical finding is that doing
so reduces the proportion of responses favoring B relative to A,
tipping response proportions away from 50/50 (Sjöberg, 1977;
Tversky, 1972) toward alternative A and resulting in a violation
the property of independence from irrelevant alternatives.

The addition of a third alternative C requires adding an ad-
ditional vector vC and its corresponding orthogonal boundary.
For an alternative similar to A, this response boundary might
be placed at vC = [

√
.1,

√
.9]. Given that θ = 2, the point

at which this vector intersects its orthogonal boundary will be
2 ·vC = [1.90, 0.63], and therefore the response boundary will be
roughly y = −0.33x+2.57. This response boundary will intersect
the ones for A and B, as shown with the yellow line in the middle-
left panel of Fig. 11. However, its intersection with y = 2 (the
boundary for B) will be at x = 1.71 while its intersection with
x = 2 (the boundary for A) will be at y = 1.90.

This means that the C boundary will intersect the B boundary
earlier along its length than it will intersect the A boundary, cut-
ting short the response rule for B more than for A. Consequently,
alternative C will ‘steal’ responses from B more often than it will
from A. The intuition here is quite clear: when there are two
similar items, they tend to split responses between them, while
the lone dissimilar item has no competitors that are high on its
same attributes and therefore experiences no splitting.

10 It is worth a quick note that context effects also occur in inferential
decisions (Trueblood et al., 2013). The geometric account does not rely on
preference-specific mechanisms like loss aversion (Usher & McClelland, 2004)
and therefore it is consistent with the observation that these effects occur in
both preferential and inferential choice paradigms.

Fig. 11. Summary of geometric explanation for context effects, examining how
choice proportions change from binary choice (top row) to ternary choice
(middle row). The displayed choice proportions are based on 50,000 simulated
trials from the model per plot. Example trajectories (20 in each plot) are color
coded based on which choice outcome they triggered, and the values of the
alternatives on the two feature dimensions are shown via their location in the
bottom panels.

B.0.2. Decoy/attraction
Another observed effect from introducing a third alternative

is referred to as the phantom decoy or attraction effect (Huber,
Payne, & Puto, 1982; Ratneshwar, Shocker, & Stewart, 1987). In
this scenario, the addition of a third option that is dominated by
one of the initial alternatives (but not by the other) results in
an increased frequency of choices in favor of the alternative that
dominates it. When we have alternatives with two features, it
should be inferior or equal to one alternative (B) on both features,
and superior to the other alternative (A) on one feature.

There are multiple ways of generating the decoy effect in the
geometric framework — notably, an alternative that breaks the
r = −1 correlation between features means that they should
actually be represented in three or four dimensions. But for
simplicity, let us focus on an attention-based explanation. The
diagram for such a setup is shown in the middle panels of Fig. 11:
alternative C is added such that it is inferior to alternative B on
dimension 1 and equal/inferior on dimension 2. Alternative C is
still higher than alternative A on dimension 2. We begin again
with alternative A at vA = [1, 0] and B at vB = [0, 1], with
response rules x = 2 and y = 2, respectively. The alternative
C is added in direction vC = [−1/3, 1], with response rule given
by the orthogonal line y = x/3 + 2.57.

The explanation for this effect posited by the model is an
attentional one: essentially, adding alternative C crowds the rep-
resentation of alternatives by occupying space near alternative B,
and the participants pay particular attention to details that can
distinguish the two. Its effect is that the vectors vA, vB, and vC all
have their dimension 1 (x-)values multiplied by a constant. For
demonstrative purposes, let us assume this constant is simply 2.
This creates the situation shown in the center panel of Fig. 11:
the response rule for A is shifted to x = 4, while the response
rule for B is unaffected (as B has a 0-value along dimension 2).

The sampling distribution should reflect the re-scaled decision
space, and so its new direction is µ = atan(4/2) = 0.46 radians,
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or about 27 degrees. This reflects a balanced emphasis on dimen-
sion 1 and dimension 2, so as not to claim that the addition of
another alternative changes a person’s underlying desires to ob-
tain a product that is high on both dimension 1 and dimension 2.
Because the threshold is higher for alternative A than alternative
B, the noise to threshold ratio is higher for B than it is for A. As a
result, the stochastic nature of the evidence accumulation process
will cause it to more frequently cross the response boundary for B
than the boundary for A even though equal emphasis is placed on
the two feature dimensions. This creates the choice proportions
shown in the center panel of Fig. 11, which favor alternative B
over alternative A when alternative C is added.

Wedell (1991) actually ruled out attention-based accounts
based on range and frequency explanations for similarity effects,
favoring one where the property of dominating another alterna-
tive (C) specifically increases support for a choice option (B) over
its non-dominated competitor (A). Such a model could also be
implemented in the geometric framework, but this adjustment
makes it so that the features of the available alternatives cannot
be perfectly (negatively) correlated, meaning the three alterna-
tives would need to be represented in three or more dimensions
rather than two. Because this is hard to show visually, it is not
displayed here, but such a representation is perfectly reasonable
to implement.

B.0.3. Compromise
In our simple example, compromise is essentially a product

of a range effect that is introduced by adding an additional
alternative. Supposing that alternative A has feature values [2,0]
and alternative B has feature values [1,1], they can initially be
positioned at vA = [1, 0] (maximum value on feature 1, minimum
value on feature 2) and vB = [0, 1] (minimum value on feature
1, maximum value on feature 2). As before, a decision-maker
desiring high values of feature 1 and feature 2 equally will drift
in direction vµ = [1, 1], resulting in equal choice proportions
between A and B.

Adding alternative C with feature values [0,2] changes the
minimum and maximum value along dimension 2 and the min-
imum value along dimension 1, resulting in a re-positioning of
alternative B in the decision space. Consequently, the new vectors
for alternatives are vA = [1, 0], vB = [

√
.5,

√
.5], and vC = [0, 1].

Since the mean accumulation direction is vµ = [1, 1], the most
frequently chosen alternative will then be alternative B.

B.0.4. Correlations between effects
The astute reader may have noticed that adding alternative C

in the decoy paradigm (bottom-middle panel of Fig. 11) should
also make alternatives A and B appear more similar on dimension
1. A fair argument could be made that vB should be therefore be
shifted rightward and the angle φAB should shrink. This would
make the orientation of the response boundaries look somewhat
like those in the compromise effect (middle-right panel). Partici-
pants sensitive to the compromise manipulation should therefore
be sensitive to the decoy manipulation as well. This prediction is
validated in empirical data on context effects, as attraction and
compromise effects tend to co-occur (Berkowitsch, Scheibehenne,
& Rieskamp, 2014; Trueblood, Brown, & Heathcote, 2015).

Conversely, a tendency to stretch the decision space when a
similar alternative is added near one of the alternatives (as in
the similarity effect manipulation, right panels of Fig. 11) would
reduce the similarity effect. To compensate for the similarity
between B and C, a participant might stretch the decision space
along dimension 1 to move the alternative vector vB leftward and
make it distinctive relative to vC . This would mean that the in-
tersection between the response rule for B and the response rule
for C would be further away, and C would ‘steal’ fewer responses

from B. As a result, we might expect that participants prone to
re-scaling the decision space to create decoy/compromise effects
would show attenuated similarity effects. This precisely what
happens in empirical data, where decoy and compromise effects
are negatively correlated with the similarity effect (Trueblood
et al., 2015).

Put together, the mechanisms of the geometric framework
allow for all three types of context effects with minimal tertiary
assumptions. While the model presented here is merely a toy
model to illustrate the effects, it seems likely that it could be
developed into a fully fledged theory of how context affects
choice. With an eye on enabling this development, the code for
these simulations is provided at osf.io/75qv4/.
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