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Modeling accuracy, response time, and bias in continuous orientation
judgments

Peter D. Kvam
The Ohio State University

Despite the prevalence of real-world and laboratory tasks where people select among many op-
tions, cognitive models have traditionally focused on choices among small sets of alternatives.
This has resulted in theoretical and empirical gaps in understanding the decision processes that
go into selections among many alternatives or responses that fall along a continuum. In this
paper, I address these issues by modeling decisions in a perceptual study where participants
produce continuous orientation judgments. I show that manipulations of stimulus difficulty
and time pressure have parallel effects to binary choice, with greater stimulus difficulty yield-
ing slower and less accurate responses and time pressure resulting in faster responses at the
expense of accuracy. These effects are well accounted for by the circular diffusion model,
with drift magnitude parameters shifting as a function of difficulty and threshold parameters
shifting with time pressure. However, a manipulation of bias using a predecision cue resulted in
bimodal distributions of responses that cannot be explained by the model in its original formu-
lation. To account for this result, I develop a theory of bias based on split attention and racing
2-dimensional diffusion processes. This model suggests that responses are determined by both
cue-driven and stimulus-driven evidence accumulation processes, where the winning process
determines responses and response times. As a result, it predicts critical features of responses
and response times in the conditions with predecision cues, including bimodal distributions of
responses and the longer response times observed in conditions where there was a discrepancy
between cue and stimulus orientations.
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Significance statement

• This study establishes how accuracy and response
times in continuous report change with time pressure,
manipulations of stimulus difficulty, and predecision
cues.

• Predecision cues that conflict with the stimulus yield
bimodal distributions of responses, which cannot be
accounted for with traditional theories of bias.

• A new theory of bias in continuous report is developed,
where stimulus- and cue-driven accumulators compete
to generate responses.
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• This model predicts patterns of responses and response
times across conditions, providing a more complete
account of bias and evidence accumulation in continu-
ous report tasks.

Introduction

Many of the tasks people accomplish require them to
make selections among many alternatives or along a contin-
uum. Whether we are deciding how much time or money
to invest, figuring out what direction to walk or drive, re-
producing the orientation of a stimulus, coming up with
the next word in a sentence, or even producing a musical
note, there is a plethora of response options available. How-
ever, our understanding of the decision processes underly-
ing these sorts of selections is sparse. This is largely due
to a traditional focus on developing theories of binary deci-
sions, where a person only has two alternatives from which
to choose (Townsend, 2008). Even models of multiple-
alternative decisions deal primarily with selections among a
relatively small set of potential responses (see, e.g., Brown
& Heathcote, 2008; Roe et al., 2001; Trueblood et al., 2014;
Usher & McClelland, 2001). Fully accounting for responses
and response times among larger sets of alternatives requires
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a computationally tractable theory of the decision processes
that generate them.

Recent work in visual working memory looking at the al-
location of cognitive resources has begun to address this is-
sue by modeling distributions of responses that fall along a
circle (Fougnie et al., 2012; Nosofsky & Gold, 2017; Van
Den Berg et al., 2012; Van den Berg et al., 2014; Zhang &
Luck, 2008). These approaches use circular or wrapped dis-
tributions to generated predictions about the density of re-
sponses from 0 to 360 degrees (or 0 to 2π radians). However,
the models used in these tasks are typically static theories
that predict a final distribution of responses without incorpo-
rating response dynamics, meaning that they do not account
for differences in reaction times [RTs] or temporal shifts in
response distributions.

The 2-dimensional circular diffusion model proposed by
Smith (2016) adds a dynamic component to these models,
generating a process-level explanation of how people come
to make responses on a circle. It predicts the complete joint
distribution of responses and response times by quantifying
the decision process in terms of a decision variable (state),
how this state changes over time (sampling), and what con-
ditions result in the generation of a response (choice crite-
rion). While promising, this model has not yet been applied
to real data, in part because continuous response tasks are
rare and ones considering response times even more so. This
paper seeks to remedy both issues by developing a simple
continuous-response paradigm and examining how (if) the
model is capable of accounting for observed behavior on the
task.

Late-breaking work of Ratcliff (in press) has also exam-
ined the joint distributions of responses and response times
using a continuous response model, though this has primarily
looked at responses that can be arranged on a line or plane
rather than a circle. Despite this, it has several analogous
parameters to the model of Smith (2016) and provided some
hints that they shift in sensible ways with manipulations of
the stimulus and instructions.

Benchmark phenomena

The development of cognitive models of binary choice has
benefited tremendously from a set of benchmark accuracy
and response time phenomena that can be observed across
task domains. Each phenomenon is triggered by a specific
task manipulation, and the resulting changes in behavior cor-
respond to shifts in a particular parameter of the cognitive
model. This allows for inferences based on selective influ-
ence: each parameter of the model can be affected indepen-
dently by a particular manipulation, so we infer that the pa-
rameters describe distinct parts of the cognitive process. Ide-
ally, we would like to be able to do the same thing with ma-
nipulations in continuous tasks. Ratcliff (in press) suggested
that this might be possible by showing that parameters de-

scribing the rate of evidence accumulation and response cau-
tion could be uniquely influenced by manipulations of stim-
ulus quality and rewards for fast vs accurate responses, re-
spectively. One of the goals of this paper is to replicate and
extend these findings by examining how task manipulations
analogous to those in binary choice affect parameters of con-
tinuous response models.

Typically, binary choice models will describe the decision
process in terms of evidence accumulation, where a person
gathers samples of information from the stimulus over time
to form their beliefs about the relative support for their choice
options. The accumulation process is broken down into an
initial belief state (what a person believes before gathering
stimulus information), evidence dynamics (how their beliefs
change over time as they gather stimulus information), and
decision rules (when to stop gathering evidence and select
one of the alternatives). The initial state models bias, where a
tendency to favor one alternative due to predecision informa-
tion is represented as a state that starts closer to one alterna-
tive (A) than another (B). Evidence dynamics are described
in terms of the drift, or the average rate of evidence change
toward A relative to B, and the noise or random change in ev-
idence over time. Decision rules are specified as a threshold
value, where beliefs stronger than θ in favor of an alterna-
tive result in a response favoring that option (Stone, 1960;
Ratcliff, 1978a). Ratcliff & McKoon (2008) point to three
important manipulations that typically impact these different
components of the decision process: speed-accuracy manip-
ulations (threshold), coherence or difficulty of stimuli (drift),
and bias manipulations (initial state). The effects of each
manipulation have been well-established across domains in
binary choice tasks, and can reliably produce shifts in one or
more parameters when a diffusion or accumulator model is
fit to participants’ data.

A speed-accuracy trade-off results from manipulations
that incentivize participants to achieve either faster responses
or a higher proportion of correct responses (Bogacz et al.,
2010; Heitz & Schall, 2012; Vickers & Packer, 1982; Wick-
elgren, 1977). In conditions where they are encouraged to
focus on accuracy, participants typically gather more infor-
mation from the stimulus, resulting in longer response times.
Conversely, when they are encouraged to respond faster, par-
ticipants typically gather less information, resulting in less
accurate responses based on inferior evidence. This trade-off
suggests that there is an internally adjustable criterion that
specifies the amount of information to gather before trigger-
ing a decision. In line with this, it ordinarily corresponds to
shifts in threshold parameters.

A difficulty effect arises when the difficulty or coherence
of the stimulus is manipulated across trials. When the infor-
mation that decision-makers receive is better, they receive in-
formation favoring the correct option more quickly relative to
noise. As a result, one can expect their accuracy to be higher
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and/or their responses to be faster. Conversely, when the
quality of information the decision-maker receives is lower,
their responses will be less accurate or slower. The quality
of decision information is indexed by the drift rate, which
can often be directly estimated from the evidence a decision-
maker receives (see Busemeyer & Townsend, 1993; Krajbich
et al., 2012; Link & Heath, 1975; Palmer et al., 2005; Nosof-
sky & Palmeri, 1997; Ratcliff, 2014).

Finally, decision bias manipulations asymmetrically af-
fect responses and response times to one alternative relative
to another.1 The alternative toward which a person is biased
will exhibit faster response times, and the one against which
they are biased will exhibit slower ones. When a person is
biased toward the alternative which happens to be correct
(congruent bias), one can expect that they will be more ac-
curate, and less accurate when biased toward an alternative
which is incorrect (incongruent bias). Bias may arise due to
unbalanced rewards for hits versus correct rejections or un-
balanced penalties for false alarms versus misses (Diederich
& Busemeyer, 2006; Pleskac & Busemeyer, 2010), different
base rates of stimuli (Wagenmakers et al., 2008; Wolfe et al.,
2007), variation in subjective beliefs, or signals of true dif-
ferences in prior plausibility of various hypotheses (Mulder
et al., 2012).

Manipulations of bias are usually connected to shifts of
the starting point of the process (equivalent to setting the
threshold asymmetrically; Edwards, 1965; Ratcliff, 1985;
Mulder et al., 2012), but it can alternatively be modeled by
shifts in the drift rate as well (Krajbich et al., 2010; Ratcliff et
al., 1999). Diederich & Busemeyer (2006) examined another
possibility as well, where pre-decision information was mod-
eled as a distinct process such that evidence was accumulated
first by accumulating pre-decision information (stage 1), then
accumulating stimulus information (stage 2). In effect, re-
sults in a distribution of initial states shifted toward the bias-
favored response rather than a single starting point.

The 2-dimensional diffusion process used to model con-
tinuous responses (Smith, 2016), described in the next sec-
tion, has a parameter structure that parallels the evidence ac-
cumulation models described above. It uses a drift magnitude
to quantify the rate of evidence accumulation toward the best
alternative, a variability parameter to describe noise in the
accumulation process, a threshold to represent the strictness
of the decision rule, and an initial state that can reflect prede-
cision information and bias. Therefore, it should be expected
manipulations of time pressure, difficulty, and bias should
affect the analogous parameters of the 2-dimensional model
– drift, threshold, and start point, respectively.

Although these three manipulations and their resulting
phenomena certainly do not constitute an exhaustive list, they
represent three of the most important empirical phenomena
that have guided construction of binary choice models. They
are particularly interesting because each effect corresponds

theoretically to a different component of the decision-making
process. If continuous responses are generated from an anal-
ogous process, then the empirical results should mirror those
of binary choice when manipulating stimulus quality, time
pressure, and bias. And in turn, these results be predicted
by shifts in the corresponding parameters of the continuous
response model.

Preliminary support for time pressure and difficulty ma-
nipulations in continuous report suggest that they do indeed
affect response caution and drift, respectively (Ratcliff, in
press). However, it is unknown what exactly the effect of
traditional bias manipulations may be, or whether these find-
ings translate to responses that can ‘wrap’ and fall around
a circle (as is typical of studies in visual working memory,
including those looking at orientation or motion direction).
The experiments and model presented here seek to fill these
gaps in our empirical and theoretical understanding.

Model description

As it predicts the joint distribution of responses on a cir-
cle and corresponding response times as required for our
present purposes, the models presented in this paper use the
2-dimensional circular diffusion model of Smith (2016) as a
starting point. 2 In this model, a decision maker’s evidence
state is represented as a position in a 2-dimensional space
that quantifies how much they have for all of the available
hypotheses. Typically, we think of 2-dimensional positions
in terms of x and y coordinates, but it is often more conve-
nient to describe the evidence state in terms of polar coordi-
nates r and φ. Respectively, these correspond to the distance
of the state to the origin on [0,∞) and its orientation relative
to the positive x direction on [0,2π) (radians) or [0◦,360◦)
(degrees). The angle coordinate φ can be understood as the
alternative a person favors or believes most, while the radius
coordinate r describes the strength of evidence in favor of
that alternative. For example, a person judging the direction
of motion of a stimulus from 0 to 360 degrees might have
a state of r = 0.1,φ = 45◦, which would indicate (assuming
r varies from say, 0 to 1) a weak belief that the stimulus is
moving toward the upper-right corner of the screen. Put to-
gether, these two coordinates describe the evidence at any

1In this paper, bias refers to a tendency to respond in favor of
one set of alternatives over another by virtue of some information
external to the target stimulus. It is not intended to refer to pat-
terns of non-coherent behavior, as the term is used in the judgment
and decision-making literature on heuristics and biases (Tversky &
Kahneman, 1974; Gilovich et al., 2002). In fact, predecision biases
in our framework may actually be adaptive and even correspond to
an optimal prior for a given decision (Bogacz et al., 2006).

2Although the model of Ratcliff (in press) could probably be
extended to model responses on a circle, the increased number of
parameters and lack of analytic likelihoods make it unnecessarily
difficult to work with for the purposes of this paper.
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point in time, including the initial state of the process.
The evidence state shifts as a person gathers new informa-

tion from the stimulus, and these dynamics are determined
by a 2+ parameter distribution that describes how r and φ

change over time. The model of Smith (2016) describes it in
terms of a pair of drift components and a diffusion rate. The
drift components describe what direction the state moves on
average in terms of the φ coordinate [drift direction] and how
quickly it moves in that direction in terms of the r coordinate
[drift magnitude]. Diffusion describes the noise in this pro-
cess – the random information generated during the evidence
accumulation process from the stimulus or from noisy neural
processes. Finally, the evidence accumulation process termi-
nates when a person is certain enough of their current leaning
– when the r coordinate exceeds a certain value. This value
is called the threshold of the decision process, and creates a
circular boundary surrounding the origin.

Figure 1. State representation, sampling, threshold, and evi-
dence trajectories for an orientation matching task.

A diagram of this model is shown in Figure 1. I test ma-
nipulations and parameters of the model using an orienta-
tion task, described in the next section. In this task, par-
ticipants can give orientation responses anywhere from 0 to
180 degrees, which is mapped onto 0 to 360 degrees on the
response circle by simply multiplying orientations by 2. 3

As participants gather evidence, their support for the vari-
ous orientation responses shifts over time, moving their state
around inside the response circle until they hit its edge. The
response time for a particular trial is given by the time it takes
to reach this response threshold (gray responses at the upper
right of Figure 1). Thus, both response and response time
are predicted as a function of the initial state, drift direction,
drift magnitude, and threshold, plus an additional parame-
ter quantifying the amount of time it takes for non-decision
processes (such as stimulus encoding and motor actions).

Methods

This study seeks to establish empirical results in contin-
uous choice by exploring continuous analogues of the three
classic binary choice phenomena. The first priority is to char-
acterize these effects descriptively, and the second is to inves-
tigate if and how a continuous response model can account
for them. In doing so, I examine what parametric shifts allow
the circular diffusion model to account for the results or what
modifications are needed in order to fully capture them. If the
structure of the phenomena and models line up with binary
choice, one should expect that speed-accuracy trade-offs cor-
respond to shifts in threshold, difficulty corresponds to shifts
in drift, and predecision information corresponds shifts in ei-
ther initial states or drift.

Each of these predictions is tested using an orientation
judgment task where participants see a rapid series of Gabor
patches and must judge the mean orientation of the patches
by giving a response from 0◦ to 180◦. In this continuous task,
assessing accuracy in terms of proportion correct would re-
quire us to discretize responses and throw away informative
data about the continuum of responses. Instead, I will refer
to the deviation of a response from the true answer or a cue.
Because the stimuli in this study all fall on 0 to 180 degree
orientations, any response deviations are bounded between
0 and 90 degrees. Note that being 120 degrees clockwise
is the same as being 60 degrees counterclockwise from the
true mean orientation. Because the stimuli fall only on a
half-circle, responses at ±180 degrees from one another are
equivalent. The smallest distance to the target / true response
is taken as the actual response deviation. Hence, perfect ac-
curacy will result in response deviations of 0, uniform ran-
dom guesses will result in average response deviations of 45
degrees, and perfect inaccuracy will produce response devi-
ations of 90 degrees.

Experiment

As in studies of binary choice, a speed-accuracy trade-off
was implemented by changing the incentive structure of the
task to reward either response speed or response accuracy.
Difficulty was manipulated by changing the coherence of the
stimulus, and predecision bias was manipulated by providing
informative cues prior to the stimulus appearing on-screen.

Task. The task is shown in Figure 2. This was primar-
ily an orientation detection task, where participants saw a

3Motion direction tasks commonly suffer from an issue where
motion in one direction will be confused for motion in the opposite
direction along the same axis. For example, motion at 90 degrees is
frequently confused for motion at 270 degrees, apparently because
the axis of motion is sampled in combination with its motion along
that axis. To avoid these types of confusions, I examined orienta-
tion, which does suffer from these complications due to symmetry.
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rapid series of Gabor patches and had to select the mean ori-
entation of the patches they saw. Each Gabor stimulus was
generated by first choosing a random mean orientation from
a uniform distribution on [0,180) degrees. On each screen
refresh (drawn every 16.7 ms / at 60 Hz), a new Gabor patch
would be drawn from a wrapped normal distribution cen-
tered on this mean orientation. The standard deviation of
this wrapped normal depended on the difficulty manipula-
tion: the standard deviations were 15, 30, or 45 degrees, cor-
responding to easy, medium, and hard difficulty (larger stan-
dard deviations result in noisier stimulus information). The
difficulty was drawn randomly between these levels on each
trial.

To begin a trial, participants clicked on a small white cir-
cle in the middle of the screen. Their cursor was then moved
to the exact center of the screen, which involved only mi-
nor adjustments as the white circle closely circumscribed this
point. In the cued condition (top left of Figure 2), constitut-
ing half the trials, they then saw a green line on the screen.
This line corresponded to the true mean orientation of the
stimulus in 50% of cued trials, and on the other 50% of
cued trials was randomly set to 20, 50, or 70 degrees away
from the true orientation (either clockwise or counterclock-
wise with a 50-50 chance). This allowed the cue to be infor-
mative but not overwhelm stimulus information in terms of
usefulness. For uncued trials, they simply saw an uninforma-
tive green circle appear (bottom left of Figure 2) before the
stimulus.

The green line cue or circle disappeared after 1000ms, the
screen was left blank for 250ms, and then the rapid Gabor
stimulus was presented. Participants could respond at any
time by moving their mouse across the edge of the white re-
sponse circle at their desired orientation (outer white circle,
Figure 2). Their response could be made on the lower or
upper half of the circle – a response at 30 degrees was equiv-
alent to one at 210 degrees – though nearly all participants
preferred to use the upper half.

Participants received points in the task for both the speed
and accuracy of their responses, contingent on whether a
block of trials was a speed-emphasis block or accuracy-
emphasis one. In the speed condition, they received 100
points for responding within 800ms of the stimulus onset
and up to 100 points based on how close they were to the
true mean orientation of the stimulus: each degree away de-
creased their reward by 1.1 points. In the accuracy condition,
they received up to 200 points based solely on how close they
were to the true mean orientation – in this case, each degree
away decreased their reward by 2.2 points. They were en-
couraged to have ballistic mouse movement by penalizing
them based on the amount of time the mouse pointer spent
between the center (circle that they clicked to start the trial)
and the edge of the response circle. This was done both to
control the non-decision time (time required for non-decision

response processes like moving the mouse) across trials as
well as avoid having participants externalize their beliefs or
use the mouse position to test orientations before responding.
Participants who accumulated a sufficient number of points
during the task received additional research credit for their
participation.

Participants. The study materials and participants were
approved by the Michigan State University Institutional Re-
view Board. A total of 12 Michigan State University stu-
dents (8 female, 4 male) each completed 960 trials of the
experiment for class credit. Participants were primarily 18-
26 years old. One additional participant completed the task,
but was removed from further analyses for having a median
response time well outside the normal range for participants
(> 5000ms, compared to 500-1500ms for other participants).
The full task, including introduction and practice trials, took
approximately 1 to 1.5 hours to complete.

The sample size of 12 participants was selected so that
the group-level posterior distributions of parameter esti-
mates were both sufficiently constrained and suitably well-
populated within each person. Because each participant pro-
vided a large number of data points and all statistics were
estimated in a hierarchical Bayesian way, this sample was
sufficient to obtain precise estimates on both individual and
group-level parameters. For the cognitive model (circular
diffusion) analyses, each individual’s data was fit separately.

Materials. All stimuli were generated and responses
recorded using MATLAB and Psychtoolbox-3 (Brainard,
1997; Kleiner et al., 2007). Responses were recorded on the
mouse.

Procedure. Upon entering the laboratory, participants
were briefed on the content of the task and completed in-
formed consent. They were then seated in a dark, windowless
office to complete the task. They completed approximately
60 practice trials of the task (more trials were generated when
responses were too inaccurate or slow), with immediate feed-
back on how quick and how accurate their responses were on
each practice trial.

Upon finishing the practice trials, participants completed
960 trials of the main task as described above. These were
organized into 12 blocks of 80 trials. The blocks were or-
ganized so that participants would see three blocks of accu-
racy with a predecision orientation cue, three blocks of accu-
racy trials with no orientation cue, three blocks of speed with
the orientation cue, and three blocks of speed trials with no
predecision orientation cue. Difficulty was randomly deter-
mined on each trial, so it varied within blocks. The order of
the blocks of trials was randomized across participants.

Before each block, participants received instructions for
the upcoming block’s condition, indicating both how they
would earn points (for the speed / accuracy manipulation)
as well as whether there would be a predecision cue. They
were also reminded before each trial whether they were in a
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Figure 2. Time course of a trial of the orientation detection task. Pre-decision cues were given as a green line (left panels),
then the series of Gabor patches was presented (center). They entered their response at any time by moving the mouse across
the white response circle (right).

speed or accuracy block with a small piece of text above the
white pre-trial center circle, which read ‘SPEED’ or ‘ACCU-
RACY’.

Upon completing the experiment, participants were de-
briefed on the purpose of the study and told how much credit
they would receive based on the number of points they accu-
mulated during the task.

Results

The analyses focused on two main outcomes. The first
was simple response times – the number of seconds it took
for a person to enter their response on a trial. The second
was error magnitude, or the distance in degrees between a
response on a particular trial and the true mean orientation of
the stimulus for that trial.

All analyses used a hierarchical Bayesian linear model,
where individual-level parameters (coefficients for the size
of each standardized effect) were constrained by a group-
level distribution. Unless otherwise specified, the Bayesian
models used diffuse priors so that the data had maximal in-
fluence over parameter estimates. In reporting, I provide the
mean posterior parameter estimates as well as the best esti-
mate of the range that includes the 95% most credible values
from this posterior distribution of parameter values. This is
referred to as the 95% highest density interval [95% HDI]
(see Kruschke, 2014). Here, I report only the group-level
parameter estimates for each effect for the sake of brevity.

The data as well as the code for each of the JAGS models
is available on the Open Science Framework at osf.io/q3ytj
(Kvam, n.d.).

Response times. Mean response times increased with
greater stimulus difficulty, increased in the accuracy condi-
tion relative to the speed condition, and increased with the
degree of mismatch between the predecision cue and the
stimulus orientation. These results are shown in Figures 3
and 4.

Before analysis, response times were log transformed in
order to make them approximately normally distributed.

Figure 3. Response times (left) and accuracy in terms of de-
grees deviation from the correct response (right) across dif-
ficulty levels and speed-accuracy manipulation. Note that
higher values indicate less accurate responses. Error bars
indicate pooled standard error across participants.

In the descriptive model, response times were predicted
as a function of four main factors. The first was stimulus
difficulty, operationally defined as the standard deviation of
the orientation of the jittering Gabor patches (15 / 30 / 45
degrees). The second was the time pressure manipulation,
coded in the models as 0 for accuracy and 1 for speed. Third
was the presence of the cue; the default cue was assumed
to be the orientation that matched the true stimulus orien-
tation, so this factor describes the benefit conferred by an
informative cue. The final factor was the orientation of the
cue, which corresponded to the number of degrees that the
cue deviated from the true stimulus orientation (i.e. 0 / 20
/ 50 / 70 degrees). The inclusion of this final factor was
conditioned on the third factor, so that cue orientation was
not considered when there was no cue. Before analysis, re-
sponse times were log transformed in order to make them
approximately normally distributed. The stimulus difficulty
and the cue orientation were standardized before using them
to predict responses or response times. Put together, the hi-
erarchical Bayesian model had an intercept, a linear main
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effect of the difficulty of the stimulus, a binary main effect of
whether each trial was a speed-emphasis trial, a binary main
effect of whether a trial included a cue, a linear main effect
for the orientation of the cue (which was conditioned on the
binary indicator for cued trials so it did not come into play on
uncued trials), and all 2-, 3-, and 4-way interactions between
these factors.

The mean estimates and 95% Highest Density Intervals
for each coefficient are shown in Table 1. As shown, the
only effects with substantial contributions to differences in
response times were the main effects, including the main ef-
fect of cue orientation that was contingent on the cue being
present (and is hence presented as an interaction). Response
times increased with difficulty as well as with less accurate
cue orientations: the further the cue was from the true mean
stimulus orientation, the longer participants took to respond.
By contrast, response times decreased with speed instruc-
tions as well as with the presence of an informative cue.

Figure 4. Mean response times (left) and response deviation
/ error magnitudes (right) as a function of the orientation of
the cue (x). Note that higher response deviations indicate less
accurate responses. Error bars indicate pooled standard error
across participants. The black dotted line with gray error
box corresponds to mean response time and accuracy from
the uncued conditions.

Each of the interactions (except of course the cue inter-
action, which is a conditional main effect) in the model in-
cluded zero as a credible value, suggesting that the various
manipulations did not interact strongly enough to produce
substantial changes in mean response times.

This model confirms that difficulty, speed-accuracy, and
cue / cue orientation manipulations had their anticipated ef-
fects. The raw data for difficulty and speed-accuracy condi-
tions can be seen in Figure 3 (left panel), and data for cue
orientation conditions can be seen in Figure 4 (left panel).

Accuracy / response deviation. The second character-
istic of responses examined was their response deviations
from the true orientation. For this metric, I took the true
mean orientations of the Gabor stimuli and compared it to
participants’ responses on the circle. A person’s response
deviation for a particular trial was the number of degrees
clockwise that their response fell relative to the true orien-

tation of the stimulus. For example, if their response was 2
degrees counterclockwise from the actual mean orientation,
their response deviation would be −2 degrees. All response
deviations therefore fell between −90 and +90 degrees. On
average, response deviations were approximately zero, in-
dicating no systemic clockwise or counterclockwise bias in
responses.

In order to gauge accuracy, it is convenient to refer to the
absolute value of the response deviation, henceforth called
the error magnitude, which is simply the the distance be-
tween stimulus and response in degrees without regard to its
direction. The error magnitudes across conditions are shown
in red in Figures 3 and 4. As expected, error magnitudes
increased in the speed relative to the accuracy condition, in-
creased with higher stimulus difficulty, and increased as the
predecision cue conflicted more with the stimulus.

To formally describe how participants’ responses shifted
across conditions, I used a model that is highly similar to
the one for response times. However, rather than the mean
location of responses – which is essentially zero, as they are
generally centered on the correct response – each factor pre-
dicted the variance of the distribution of responses. 4

As before, these outcomes were allowed to change as a
function of main effects of difficulty (linear effect), speed
manipulation (binary factor), cue presence (binary factor),
and cue orientation (conditional linear effect), as well as the
interactions between all combinations of these factors. For
simplicity, I discuss the results in terms of accuracy. This
means that lower coefficients for effects on response devi-
ation correspond to higher accuracy and higher coefficients
correspond to lower accuracy.

Estimates for all coefficients are shown in Table 2. The
same main effects of manipulations appeared as in response
times. High difficulty, speed emphasis, and inaccurate ori-
entation cues all increased error magnitudes while low dif-
ficulty, accuracy emphasis, and the presence of an accurate
cue all decreased error magnitudes.

However, unlike the response time results, the response
results were somewhat complicated by interactions between
manipulations. The 2-way interaction between difficulty and
speed emphasis as well as the 3-way interaction between dif-
ficulty / cue / orientation and 4-way interaction between dif-
ficulty / speed / cue / orientation, each of which increased
accuracy, can be at least partially attributed to a floor effect.
These manipulations put together would result in the lowest
accuracy conditions – note the large main effects of diffi-
culty, speed, and cue orientation on accuracy – but average
response deviations have an upper bound. Guesses will yield
responses that are on average ±45 degrees away from the

4Formally, they predicted the log of the variance of this distribu-
tion in order to allow the sum of all factors to take any value and to
make the predicted variances log-normally distributed (for a similar
approach, see Kvam & Pleskac, 2016).
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Table 1
Mean estimates of coefficients for main effects and interactions of stimulus difficulty, time pressure, cue presence, and cue
orientation on response times. The ranges containing the 95% Highest Density Interval (HDI) are also provided. Intervals
excluding zero are starred for quick reference.

Coefficient Mean Estimate 95% HDI
Difficulty 0.06 [0.04,0.08]*
Speed −0.13 [−0.19,−0.06]*
Cue −0.09 [−0.14,−0.03]*
Cue × orientation 0.04 [0.02,0.05]*
Difficulty × speed −0.02 [−0.03,0.00]
Difficulty × cue −0.02 [−0.04,0.00]
Difficulty × speed × cue 0.00 [−0.02,0.02]
Difficulty × cue × orientation −0.00 [−0.02,0.01]
Speed × cue −0.02 [−0.06,0.02]
Speed × cue × orientation −0.01 [−0.01,0.00]
Difficulty × speed × cue × orientation 0.01 [−0.01,0.02]

Table 2
Mean estimates of coefficients for main effects and interactions of stimulus difficulty, speed manipulation, cue presence, and
cue orientation on accuracy of responses. The ranges containing the 95% Highest Density Interval (HDI) are also provided.
Intervals excluding zero are starred.

Coefficient Mean Estimate 95% HDI
Difficulty 0.79 [0.70,0.89]*
Speed 0.16 [0.07,0.26]*
Cue −0.31 [−0.49,−0.14]*
Cue × orientation 0.52 [0.40,0.65]*
Difficulty × speed −0.09 [−0.15,−0.04]*
Difficulty × cue −0.24 [−0.46,−0.02]*
Difficulty × speed × cue 0.03 [−0.06,0.13]
Difficulty × cue × orientation −0.09 [−0.15,−0.03]*
Speed × cue −0.05 [−0.21,0.09]
Speed × cue × orientation 0.06 [0.00,0.12]
Difficulty × speed × cue × orientation −0.05 [−0.09,0.00]

true orientation, so mean response deviations will generally
not exceed these values in any conditions.

The interaction between difficulty and cue presence was
the strongest effect of these and the only one to rival any
of the main effects. This seems to be related to the effect
of the cue on response distributions. As I show in the next
section, it appears that participants often responded consis-
tent with the cue without merging it with stimulus informa-
tion. I attribute this to a competition process between the cue
and stimulus, where a cue-driven and stimulus-driven pro-
cess race to threshold. Because the stimulus-driven process
is weaker in more difficult conditions, the cue-driven pro-
cess is more likely to win the race. As a result, accuracy is
particularly strongly affected by the cue in the more difficult
conditions, yielding the cue-difficulty interaction.

Response distributions

One of the most striking results of the study comes from
the distributions of responses observed in the cued condi-

tions, shown in Figure 5. When the cue indicates the cor-
rect stimulus orientation (top panel), responses form a typ-
ical von Mises distribution centered on the true orientation
of the stimulus. However, when the cue substantially differs
from the mean orientation of the stimulus, the pre-decision
cue resulted in bimodal distributions of responses (bottom
panels). In these cases, one mode is centered on the stimulus
orientation and the other is centered on the cue orientation.

This bimodal distribution of responses does not make
sense from the point of view of models that propose an in-
tegration of the evidence from the two sources of informa-
tion (cue and stimulus). Models that posit a shift in start-
ing point (including the 2-stage model of Diederich & Buse-
meyer, 2006) or drift distributions would suggest that a com-
promise between cue- and stimulus-consistent information
could be reached, resulting in responses that are concentrated
partway between the stimulus mean and the cue. Instead,
decision-makers appear to be using either the cue or the stim-
ulus to generate their responses rather than merging informa-
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Figure 5. Distribution of responses in cued conditions. Dot-
ted black lines indicate the stimulus mean orientation, and
vertical gray lines indicate the orientation of the cue relative
to the stimulus.

tion from the two sources.

Given the commonplace use of integration-type bias mod-
els in binary choice, this result is somewhat surprising. At the
same time, it illustrates one of the benefits of using continu-
ous tasks. In binary choice, the effects of drift bias and start-
ing point bias both swing decisions toward the bias-favored
alternative in similar ways, so the exact nature of this bias
(integrative vs competitive) would not be observable from
binary choice proportions. The continuous task – and in par-
ticular the distribution of responses it generates – therefore
grants us a richer picture of the biasing effect of cues.

The bimodal distribution of responses cannot be handled
by the lone 2-dimensional diffusion process of Smith (2016),
as it predicts unimodal distributions of responses on the cir-
cle. As a result, it is necessary to develop an extended theory
of how responses are generated in the presence of a cue. Bi-
modality is accounted for in the model of Ratcliff (in press)
by virtue of competing accumulation processes; a similar ap-
proach can be gainfully applied here. I supplement the cir-
cular diffusion model with an analogous mechanism by con-
structing a race between stimulus-driven and cue-driven re-
sponse processes for the cued trials. To reach a point where
this can be done, it is helpful to focus first on understand-
ing the stimulus-driven component of the response process.
Therefore, I present a model for the uncued conditions next,

which can in turn be used to model the stimulus-driven com-
ponent of responses in the cued conditions.

Modeling

Although it may not work well for modeling cued con-
ditions, the circular diffusion model can still be applied to
modeling orientation responses in the uncued condition. To
do so, minor transformations to the response space are re-
quired to map the stimuli – which are rotationally symmet-
ric at 180 degrees – to responses on the circle that are dis-
persed across 0 to 360 degrees. The simplest transformation
here is to multiply all orientation responses by two. Doing
so constructs a response space where stimuli at orthogonal
rotations (i.e. 45 / 135 degrees or horizontal / vertical) pro-
vide evidence against one another. The response options can
then be arranged in a circle as shown in Figure 1: vertical re-
sponses are on the upper part of the circle opposite horizontal
responses, and rightward learning responses are on the right
side of the circle opposite leftward leaning responses.

A person’s beliefs at any given time are represented as
a point within this circle centered on the origin. Beliefs in
favor of a vertical orientation are represented as a point fur-
ther upward, those in favor of a leftward orientation further
left, and so on. A person’s initial beliefs can be described as
one of these points – in the case where they believe the rela-
tive likelihoods of the different stimulus states are even (e.g.,
if they have not seen any cue or stimulus information), this
point would be located at the origin or the center of the circle
shown in Figure 1. The initial state is then updated with new
information as a person views the stimulus: as they sample
left-leaning orientations, the state moves leftward; with hor-
izontal orientations, it moves downward; with vertical orien-
tations, upward; and so on.

As this process unfolds over time, the samples add up to-
gether to form the trajectory of a random walk, shown as the
gray trajectories in Figure 1. As the steps of the random walk
become very small, this motion approximates Brownian mo-
tion with drift (Stroock & Varadhan, 2007; Itô, 1974). As
I described in the introduction, this can be characterized in
terms of drift direction ρ, the drift magnitude |µ|, and diffu-
sion parameter σ2.

The evidence accumulation process halts when the state
crosses a threshold θ, which indicates how much total infor-
mation a person wishes to have before making their selection.
It specifically adjusts the radius of the circle shown in Figure
1: larger θ will mean that they wait for more information be-
fore selecting, and a smaller θ will mean they wait for less.
When a person’s state crosses the edge of this circle, they
make a response corresponding to the location at which they
crossed the circle. For example, crossing at 90 degrees on
the circle would lead to a “vertical” response.

This gives a distribution of responses for the model, but
does not yet predict the amount of time it takes to complete
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the response. The amount of time it takes the random walk
(drift + diffusion process) to reach the threshold determines
decision component of response time. The remaining time
components of the response process that are not decision-
related, such as perceiving the stimulus and executing the
motor response corresponding to a selection, are quantified
in the non-decision time ndt.

Put together, this yields 6 main components of the model:
initial state, drift direction, drift magnitude, diffusion, thresh-
old, and non-decision time. One of these must be fixed in or-
der to set the scale of the model; otherwise, one could inflate
threshold, drift magnitude, and diffusion and obtain the same
accuracy and response time predictions. To ensure that all
parameters are identifiable, the diffusion coefficient is set to
1 across all models reported in this paper. The starting point
can also be set to [0,0], as participants have no information
before the stimulus appears in the uncued conditions.

The joint likelihood for the responses Resp and response
times RT are given as a function of the remaining parameters,
Pr(Resp = x,RT = t|µ,θ,ρ,ndt).

Pr(Resp = x,RT = t|µ,θ,ρ,ndt) =

exp
(

θ|µ|(cos(x)cos(ρ)+ sin(x)sin(ρ))− |µ|
2(t−ndt)

2

)
·θ2

n

∑
k=1

j0,k
J1( j0,k)

exp
(− j2

0,k(t−ndt)

2θ2

)

The function J1() is a first-order Bessel function of the
first kind, and the elements j0,k are the zeros of the zero-
order Bessel function of the first kind. The series ∑

n
k=1 com-

putes and evaluates the function for the first n zeros. The true
likelihood is given by an infinite series, n = ∞. However, for
the practical purposes of this study, I found that n = 50 to
150 yields sufficiently precise approximations. This value
can be decreased for computational efficiency or increased
for precision; higher values of n are particularly important to
use for accurately computing likelihoods at the leading edge
of the RT distribution.

This model was implemented in MATLAB and estimated
using an Markov chain Monte Carlo sampler with a stan-
dard Metropolis-Hastings algorithm (van Ravenzwaaij et al.,
2016). This is one of the first applications of this model to
real data, so a custom-built sampler was used in order to al-
low for better troubleshooting and debugging in MATLAB.
The model likelihoods and simulation code can also be im-
plemented in R using the CircularDDM package available
at cran.r-project.org/web/packages/CircularDDM (Lin et al.,
2017). This code can also be put together with other types
of samplers for greater sampling efficiency and convergence
between chains.

Uncued conditions model

The first cognitive model examines only uncued condi-
tions in order to establish relationships between the speed-
accuracy and difficulty manipulations and the drift magni-
tude, drift direction, threshold, and non-decision time pa-
rameters. Each of these parameters was permitted to vary
freely across the six speed / accuracy and difficulty level
conditions, and they were estimated separately for each par-
ticipant and condition. The priors were set as drift direc-
tion ρ ∼Uni f orm(0,360) (in degrees), drift magnitude µ ∼
Gamma(2.0,1.5), threshold θ ∼ Gamma(2.0,1.5), and non-
decision time ndt ∼ Gamma(2.0,0.2) (Gamma distributions
used the shape-scale parameterization). These priors were
designed to constrain the parameters to reasonable ranges
while not heavily influencing the posterior distributions. Ad-
ditionally, the priors were the same for each condition and
participant, so any differences between posterior distribu-
tions can be attributed purely to differences in the data rather
than to priors.

Each participant and condition was run for 5 chains of
length 10,000 samples. A few failures to converge occurred
on initial runs, primarily due to errors in estimating likeli-
hoods at the leading edge of the distribution that led to ex-
tremely high likelihoods for extremely unreasonable param-
eter values. Chains that failed to converge were re-run with
a higher value for n in the likelihood computation (yielding
greater precision in approximating the infinite series), which
successfully addressed this issue. The final estimates of these
parameters across participants are shown in Figure 6 and pro-
vided online at the Open Science Framework, osf.io/q3ytj/.

Drift direction estimates (top left of Figure 6) were consis-
tently centered at zero across all uncued conditions, confirm-
ing no clockwise or counterclockwise bias to participants’
responses. Drift magnitude estimates (bottom left of Figure
6) decreased with stimulus coherence, indicating that stim-
uli with higher variance in orientation were indeed providing
weaker evidence. Drift magnitude estimates were similar be-
tween speed and accuracy conditions as well, suggesting that
participants were gathering information at roughly the same
rate and quality regardless of time pressure.

Threshold estimates (top right of Figure 6) were consis-
tently higher in the accuracy relative to the speed condi-
tion, suggesting that participants were applying stricter cri-
teria for their decisions to the evidence in the accuracy con-
dition relative to the speed condition. This shift explains the
longer response times and higher accuracy in the accuracy
condition as shown in Figure 3. There is a small sugges-
tion that threshold estimates decreased with increasing diffi-
culty, though this effect is quite small in comparison to that
of the speed-accuracy manipulation. Similar results were
found by Kvam & Pleskac (2016) – the authors suggested
that such an effect may be the result of increasing thresholds
when high-quality information is available, suggesting that
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Figure 6. Mean estimates and 95% highest density intervals for for drift direction (top left), drift magnitude (bottom left),
threshold (top right), and non-decision time (bottom right) for each participant (each participant is a different color) and
uncued condition. The mean parameter values across participants for each condition are shown in black.

participants are adjusting their choice criteria on-line, or it
could be the result of decision boundaries that collapse over
time. The latter possibility would indicate that participants
are trading off accuracy for the amount of time it takes to
finish a trial (Bowman et al., 2012; Drugowitsch et al., 2012;
Ratcliff & Frank, 2012; Palestro et al., 2018). Fortunately,
fixed-boundary versus collapsing-boundary models in binary
choice predict highly similar distributions of response times
(Voskuilen et al., 2016), suggesting that collapsing bound-
aries are unlikely to be a necessary component of the model
at present. A simpler explanation is that this is simply a side
effect of fixing the diffusion rate across conditions, as the
noise sampled during accumulation is actually likely to in-
crease with greater difficulty, causing the relative threshold
estimates to appear to decrease as stimulus signal gives way
to noise. Functionally, each of the parameters estimates is
relative to the set diffusion rate, so they are not each uniquely
identified. In this sense, a diffusion rate shift is mathemati-
cally equivalent to particular shifts in drift and threshold, so
one will naturally be expressed in terms of the other when a
parameter is fixed to set the scale of the model.

Finally, non-decision time (bottom right of Figure 6),
like drift direction, appeared not to change substantially be-
tween speed and accuracy conditions or across difficulty lev-
els. With the exception of a single participant (red partici-
pant), within-subject shifts in non-decision time were typi-
cally within approximately 20-30 milliseconds.

Overall, the model was able to capture the distributions
of responses and response times well across conditions. The
predictions generated from the mean posterior parameter es-

timates for each participant are shown in Figures 7 and 8.
Most notably in responses, the model tracked the decreasing
precision of responses with greater stimulus difficulty (left
/ middle / right panels of each subplot in Figure 7) and the
slightly lower precision in the speed relative to the accuracy
condition (pink and blue plots in Figure 7, respectively). It
also tracked the slowing response times with increasing stim-
ulus difficulty (left / middle / right panels of each subplot)
and the slower response times in the accuracy (blue) relative
to the speed (pink) condition as shown in the response time
plots in Figure 8.

Cued conditions model. As I covered in the results, the
cued data frequently exhibit a bimodal distribution of re-
sponses, where one mode is centered on the mean stimulus
orientation (as in the uncued trials) and the second mode is
centered on the location of the cue (Figure 5). This suggests
that on many trials, the cue information was not integrated
together with conflicting stimulus information, but rather it
was used instead of stimulus information. The resulted in
either responses consistent with the stimulus or responses
consistent with the cue, rather than responses that were a
compromise between stimulus and cue.

There are a few possibilities here that can be ruled out on
the basis of the bimodal responses alone. For example, start-
ing point bias and drift bias models predict a single mode
to the response distributions. This occurs because drift and
starting point bias models assume that participants integrate
cue and stimulus information into a unified evidence rep-
resentation, which winds up producing responses that are a
weighted average of the stimulus and cue orientations. This
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Figure 7. Observed (histograms) and predicted (lines, generated from the mean posterior parameter values) distributions of
responses for each participant and condition. Each subplot contains the data for a separate participant. Within each subplot is
shown the distributions for different levels of stimulus difficulty, given as the standard deviation of the distribution of stimulus
orientations (15/30/45). The speed emphasis condition is shown in pink, and the accuracy emphasis condition is shown in
blue.

would result in a single peak in the response distribution, lo-
cated partway between the stimulus mean and the cue direc-
tion.

A two-stage model, where the cue drives an initial evi-
dence accumulation stage and the stimulus drives a subse-
quent one (Diederich & Busemeyer, 2006), typically makes
similar predictions to the starting point model and can be
ruled out for similar reasons. If the evidence accumulated
from the cue-processing stage does not trigger a response, it
can instead be represented as a distribution of starting points
for a subsequent stimulus-driven process. This would again
result in a unimodal distribution of responses. However, in
such a model it would also technically be possible to cross
the threshold during the cue-processing stage, before reach-
ing the stimulus-processing stage. However, this would re-
sult in cue-consistent responses concentrated near the non-
decision time (as there would be no additional decision time
required to make a selection), which does not pan out in
the empirical RT distributions. Instead, it seems that cue-
consistent responses and stimulus-consistent responses have
similar response time distributions, with the cue-consistent
responses often being slower than the stimulus-consistent

ones – something which is directly in conflict with a two-
stage account.

Another possible explanation is that the cue and stimu-
lus compete with one another to generate responses. Ac-
cording to this hypothesis, the cue would drive its own
evidence accumulation process, where support for a cue-
consistent response grows over time in parallel with support
for a stimulus-consistent response. The process that hits a
response boundary first “wins” the race and generates a re-
sponse consistent with its representation.

An explanation based on competition between cue and
stimulus provides a clear justification for the appearance of
bimodal distributions of responses. But there are still out-
standing phenomena to explain in the cued conditions. In
addition to the bimodal distribution of responses, it is impor-
tant to return take note of the pattern of results in Figure 4:
responses are both faster and more accurate when the cue and
stimulus agree with one another, and slower when they are in
conflict. This suggests some interaction between the cue and
stimulus evidence accumulation.

Accounting for the results shown in Figures 4 and 5 is
far from straightforward. It suggests a number of additional
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Figure 8. Observed (histograms) and predicted (lines, generated from the mean posterior parameter values) distributions of
responses for each participant and condition. Each subplot contains the data for a separate participant. Within each subplot is
shown the distributions for different levels of stimulus difficulty, given as the standard deviation of the distribution of stimulus
orientations (15/30/45). The speed emphasis condition is shown in pink, and the accuracy emphasis condition is shown in
blue.

assumptions must be made to account for behavior on cued
trials. The first assumption has already been covered: I pro-
pose that the cue drives a separate accumulation process that
can trigger a response consistent with the cue’s orientation.
The second assumption is one regarding attention: I propose
that the cue draws attention to orientations similar to the one
shown on the screen, making a person more likely to sample
orientations consistent with the cue when gathering informa-
tion from the stimulus.

The practical implementation of the second assumption is
to scale the drift magnitude by the position of cue relative
to the stimulus. When the cue and stimulus are close to one
another, drift magnitude for the stimulus should be higher.
And when they are further apart, drift magnitude should be
lower because attention derived from the cue does not facili-
tate the perception of orientations coming from the stimulus.
To account for this effect, I simply add an excitation / in-
hibition factor to the drift magnitude of the stimulus-driven
accumulation process. The size of this effect is controlled by
a free parameter γ, which determines how much is added or
subtracted from the value of µ as a function of the difference
between stimulus and cue orientations, ρs−ρc. Formally, the

drift magnitude for the stimulus µs is re-specified as

µ′s = µs + γ · cos(ρs−ρc) (1)

Note that the cosine function will result in excitatory inter-
actions (positive values) between stimulus and cue when they
are within 45 degrees of one another, and inhibitory interac-
tions (negative values) when they are 45 to 90 degrees re-
moved from one another. The scalar γ simply determines the
magnitude of the effect. This simple transformation agrees
well with the empirical result shown in Figure 4, where the
crossover from improving to diminishing accuracy and RT
happens between cue orientations of 20 and 50 degrees.

In the model below, the difference in drift directions for
the cue and stimulus are simply set to the orientation of the
cue and true mean orientation of the stimulus, respectively.
As shown, this allows the model to account for the shift in
response times across cue orientations with no trouble.

Model predictions. With these two assumptions, it is
possible to account for the important effects of the cue. For-
mally, the stimulus-driven process is identical to the one pre-
sented in the previous section except for the attention effect
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added to the drift magnitude (µs replaced by µ′s from Equa-
tion 1). It is defined in terms of a drift direction ρs, drift
magnitude µ′s , noise (set to 1), threshold θs, and non-decision
time ndts. The cue-driven process is characterized in a sim-
ilar way, by setting a drift direction ρc, drift magnitude µc,
diffusion rate σ2

c , threshold θc, and non-decision time com-
ponent ndtc.

As I show below, it is only necessary to allow 2 of the cue-
driven process parameters to vary across conditions. One has
to be fixed for scale (threshold was set because it seemed the
least interpretable aspect of the cue-driven process), drift di-
rection for the cue-driven process can simply be specified as
the orientation of the cue, and non-decision time can be fixed
at the same value as the uncued conditions. This leaves only
drift magnitude for the cue µc, diffusion rate for the cue σ2

c ,
and the excitation/inhibition factor γ as free parameters in the
model.

Because the two processes are racing, the likelihoods of
finishing at a particular time are conditioned on the likeli-
hood of the opposing process finishing after that time. This
gives the likelihood for the stimulus-driven responses:

Pr(Resp = x,RT = t| stimulus) =
Pr(Resp = x,RT = t|µs,θs,ρs,ndts)

·
(

1−
∫ t

0
Pr(Resp = x,RT = t|µc,θc,ρc,ndtc)

) (2)

Here, Pr(Resp = x,RT = t|µs,θs,ρs,ndts) is given from
Equation . Conversely, the cue-driven responses will be con-
ditioned on the stimulus-drive response not finishing by time
t.

Pr(Resp = x,RT = t| cue) =
Pr(Resp = x,RT = t|µc,θc,ρc,ndtc)

·
(

1−
∫ t

0
Pr(Resp = x,RT = t|µs,θs,ρs,ndts)

) (3)

The overall likelihood of responses is then simply given
by adding the two conditional distributions from Equations 2
and 3 together.

Pr(Resp = x,RT = t|µs,µc,ρs,ρc,θs,θc,ndts,ndtc) =

Pr(Resp = x,RT = t| stimulus)
+Pr(Resp = x,RT = t| cue)

(4)

Unfortunately, computing the complete joint probability
density function requires the use of numerical integration
to evaluate the cumulative distributions in Equations 2 and
3. Alternatively, simulated trials can be generated from the
model and used to generate an approximate likelihood func-
tion by passing a kernel density estimator over the simulated

data (Holmes, 2015; Turner & Sederberg, 2012). Either ap-
proach will be more computationally strenuous than the ana-
lytic likelihoods for the uncued model.

For the present purposes, I approximated the conditional
distributions from Equation 4 by calculating the cumulative
response time distributions for the cue- and stimulus-driven
processes separately at 10-ms intervals, then conditioned the
cue RT distribution on the cumulative stimulus RT distri-
bution and conditioned the stimulus RT distribution on the
cumulative cue RT distribution. In general, this condition-
ing in the model should result in a shorter tail to the re-
sponse time distributions in cued conditions, which did seem
to appear in the empirical RT distributions (compare Figure
8 against Figure 9). The diffusion coefficient for the cue-
based process seemed more informative than the threshold,
as it directly gives information about the variability of cue-
based responses and the rate at which the cue-driven pro-
cess moves, so the threshold for the cue-driven process was
fixed at θc = 2.0 and the drift magnitude µc and diffusion
rate σ2

c for the cue-driven process were estimated instead.
For those readers interested in looking at threshold rather
than diffusion rate estimates, these can be computed by re-
lating µ, σ2, and θ from Equation (or Equations 22 and 23
in Smith, 2016). The model did not seem to require a shift
in non-decision time for the cue-driven process, so cue non-
decision time was fixed to the value of stimulus non-decision
time, ndtc = ndts. The stimulus-driven process was restricted
to the parameter values estimated from the non-cued trials.
Finally, data was collapsed between symmetric cue orienta-
tions (e.g. +70 and −70 degrees) to ensure there was suffi-
cient data in each condition. In the end, the cued condition
model was quite simple but accounted well for the data.

The model predictions for the cued conditions are shown
in Figure 9 overlaid on the response and response time data.
Critically, the inclusion of the parameter γ allowed the model
to account for the mean shifts in RT across orientations of
the cue (bottom panels). The model suggests that as the cue
moves further away from the stimulus, attention is divided
between orientations, resulting in a lower drift magnitude
for the stimulus and consequently a longer distribution of re-
sponse times. As a result, it predicts well the pattern of mean
response times shown in Figure 4 (left panel). This effect ap-
parently cannot be captured without some sort of interaction
between the cue and stimulus: a race by itself without the
effect from Equation 1 will predict identical distributions of
response times, as will a simple probability mixture model of
cue- and stimulus-driven responses.

Of course, the model also captures the bimodal distribu-
tions of responses in the cued conditions (top panels of Fig-
ure 9). As a consequence, it will have no trouble capturing
the shifts in accuracy based on cue orientations shown in the
left panel of Figure 4. The model allows accuracy to im-
prove when the cue and stimulus agree; this happens both be-
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Figure 9. Histograms of data (bars) and model prediction (lines) for the cue-inclusive conditions, including response distribu-
tions (top) and response time distributions (bottom) for 0, 20, 50, and 70 degree cue deviations (left to right).

cause the cue will sometimes yield the exact correct answer
(naturally improving accuracy) and because of the excitatory
effects of γ yielding higher drift magnitudes when stimulus
and cue agree. Although the model tends to very slightly
over-predict the variability of responses in the 0 degree cue
condition, this effect is still quite clearly captured in general.

Of course, the results shown in Figure 9 might not hold
for every individual participant. As one reviewer rightly sug-
gested, it could be the case that some participants use the cue
and others do not, resulting in a mixture of strategies across
people. This would create different distributions of responses
at the individual level that appeared as bimodal on the aggre-
gate. As shown in Figure 10, this seems not to be the case.
Though they do so to varying degrees, essentially every par-
ticipant shows some amount of bimodal responding, which
is most evident in the 70-degree conditions.

Fits to each individual’s data, which also shows these
response distributions in finer-grained detail, can be found
in the online materials on the Open Science Framework at
osf.io/q3ytj. Table 3 shows the mean posterior parameter val-
ues for each participant, giving some insight into how much
of an influence the cue had on different people’s responses.
For example, participant 5 had a large drift magnitude for the
cue-driven response process (high µc), but very little benefit
from the cue on the stimulus-driven process (low γ). This
may indicate a participant who was inclined to trust the cue
completely rather than using it to inform their beliefs about
the stimulus. Conversely, participant 1 had a relative low
drift for the cue-driven process but a high value for γ, in-
dicating that they allowed the cue to redirect their attention
toward corresponding orientations but not to override the in-
formation they sampled from the stimulus.

Put together, the two assumptions of competing accumu-
lators and excitatory / inhibitory relations between cue and

Table 3
Mean estimates of the drift magnitude of the cue (µc), dif-
fusion coefficient of the cue (σc), and excitation / inhibi-
tion due to the relative orientation of the cue and stimulus
(γ) for each participant. These were used in combination
with the estimates from the original uncued condition for the
stimulus-driven process. These estimates and their HDIs are
provided in online material on the Open Science Framework
(osf.io/q3ytj).

Participant µc σc γ

1 1.20 1.06 1.31
2 1.51 0.15 1.32
3 1.30 0.67 0.81
4 1.29 0.36 0.61
5 2.91 0.28 0.00
6 1.64 0.35 0.74
7 2.57 1.06 0.15
8 2.47 0.36 0.35
9 0.89 0.23 0.62
10 1.54 0.59 0.73
11 1.31 0.97 0.78
12 1.19 1.13 0.84

stimulus seem to account for the major findings associated
with the cued conditions. The two primary empirical chal-
lenges come from Figures 4 and 5: responses in cued condi-
tions are bimodal, and greater discrepancy between stimulus
and cue results in slower response times. These two find-
ings put together pose a major stumbling block for classical
theories of bias (which predict unimodal response distribu-
tions) as well as theories based on probability mixtures or
fully independent cue and stimulus processes (which predict
uniform response times across cue orientations). By includ-
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Figure 10. Distribution of responses in cued conditions for each participant, including cue orientations of 0, 20, 50, and 70
degrees relative to the stimulus (left to right).

ing both cue-driven and stimulus-driven responses that in-
teracted based on the discrepancy between their orientations,
the model developed here was able to cover both phenomena.
As a result, the proposed model provides the most complete
theory of bias in tasks where responses fall along a scale or
continuum.

A note on parameter variability

Diffusion and accumulator models of binary choice typi-
cally include trial-to-trial variability in the parameters of the
model, particularly for drift rates and starting points (Brown
& Heathcote, 2008; Ratcliff, 1978b; Ratcliff & Smith, 2004).
This is usually done because an absence of variability in
these parameters will result the same distribution of response
times for error and correct responses. Drift rate variability,
which in our case would be reflected by variability in drift
magnitude, is usually introduced to account for slow errors.
Conversely, starting point variability is frequently introduced
to account for fast errors.

Because responses can fall along a continuum in this task,
the analogous phenomenon would be covariance between er-
ror magnitude (response deviation) and response time. Drift
variability would create a positive correlation between error
magnitude and response time, while starting point variabil-
ity could create a negative correlation between them. This
occurred in the cued conditions in our task, where it can be
explained as a natural consequence of multiple response pro-

cesses arriving at different times. However, the model of the
uncued condition – with no variability in parameters or com-
peting processes – should generate response times that have
the same distribution regardless of the orientation response a
person gives.

Of course, this can be violated across conditions such as
the speed-accuracy manipulation, as drift rates and thresh-
olds shift systematically across them. However, within an
individual uncued condition there should be no substantial
relationship between response time and response deviation.
This prediction was examined using a hierarchical Bayesian
linear model, with each combination of participant and con-
dition having its own correlation between RT and response
deviation. Each of the condition-level correlations was con-
strained by a group-level distribution of RT-response rela-
tionships to obtain an estimate for the relationship between
RT and response for each condition. Looking at these es-
timates for each condition garners an overall sense of how
response deviation and response time are related across the
uncued trials.

A plot of the relationship between the magnitude of re-
sponse deviations (x) and response times (y) is shown in Fig-
ure 11. While occasional participants and conditions seemed
to show a positive or negative relationship, this was not re-
flected in the overall results. The group-level mean estimate
for the standardized correlation between response time and
response deviation, across all conditions and participants,
was centered at 0.01, and the 95% highest density interval
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Figure 11. Scatter plot and linear estimate of the relationship between response time and response deviation for each participant
(shown in separate colors).

suggested that the correlation was between −.03 and .06.
Therefore, it seems that the relationship between RT and re-
sponse deviation is small enough (if it exists) that the model
does not need to be modified to account for the result.

The lack of relationship indicates that drift or start point
variability is not required to account for qualitative patterns
in the results. This is particularly relevant to the model of
Ratcliff (in press), which posits trial to trial variability in
drift in a continuous process. Both the present paper and the
experiments in Ratcliff’s work seem to find no strong con-
nection between error magnitude and response times (within
conditions), which for the time being suggests that a simpler
model without parameter variability is sufficient. Of course,
this may not hold for all continuous response tasks. As more
work is done on the topic, it should become evident which
tasks require parameter variability and which ones do not.

Discussion

The results provide strong support for the presence of con-
tinuous analogues of the three binary choice effects: a speed-
accuracy trade-off, a stimulus difficulty effect, and a bias-
ing effect from predecision cues. As a result, a model with
similar structure to diffusion or accumulator models should
be well-suited to describing behavior in continuous-response
tasks. This is reflected in how the parameters of the model
change with manipulations. As in binary choice and the con-
tinuous work of Ratcliff (in press), speed-accuracy manipu-
lations yield shifts in thresholds and difficulty manipulations
yield changes in drift.

However, the effects associated with predecision cues
seem to be more complex than previous theories of bias
would suggest. Not only did cues improve or hinder response
accuracy and response time based on the match between cue
and stimulus, but cues that conflicted with the stimulus gen-
erated bimodal response distributions. Accounting for these

results required additional assumptions: namely, that the cue
and stimulus drive separate accumulation processes and that
the cue brings attention to those orientations consistent its
indicated direction.

The exact nature of the attentional effect of cue orienta-
tion, reflected in drift magnitude, is likely to be connected
to the tuning functions of orientation columns in the brain.
For example, vertical columns will be most highly activated
by vertical orientations of a cue, but they may also be ac-
tivated more weakly by orientations of 0-20 degrees away
from vertical. Activity of the true stimulus direction may be
facilitated by off-mean orientations simply because the tun-
ing function of orientation columns overlaps with nearby cue
orientations (Hubel & Wiesel, 1974; Yacoub et al., 2008).
Conversely, they may be inhibited by orientations close to
horizontal, whether this is due to direct inhibition between
orientations or simply a reallocation of attentional resources
resulting from the cue.

The interaction between competing cue-driven and
stimulus-driven processes is likely to have neural correlates
as well. Strong evidence from conflict processing sug-
gests that anterior cingulate cortex should be active when
monitoring conflicts between multiple information streams
(Gehring et al., 1993). Computational models of this pro-
cess, using tasks such as the Flanker task (Eriksen & Schultz,
1979), have suggested that similar interactive processes may
be responsible for the delayed response times when dif-
ferent sources of information indicate conflicting responses
(Botvinick et al., 2001; Lu & Proctor, 1995), even when the
cue is irrelevant (Simon & Rudell, 1967). It is entirely pos-
sible that the same conflict mediation processes take place
when the cue and stimulus disagree in experiments like the
one here, and it seems likely that ACC activation might cor-
respond to the output of Equation 1 and the values of γ esti-
mated in the model. Certainly these possibilities pose inter-
esting directions for future neuroimaging work using the task
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and/or model developed here.
Finally, one caveat to the model presented here is that trial

to trial variability is not introduced for any of the parameters.
In binary choice models, drift rate or starting point variability
are important to include because they generate the asymmet-
ric distributions of correct and error response times observed
in empirical data. However, such variability appears not to
be required for the present results, where the magnitude of
errors in uncued conditions was unrelated to mean response
times. This allows us to use a simpler model that does not
include trial to trial variability for the time being. Of course,
the cued conditions drive a pair of accumulators that can re-
sult in response time asymmetries for responses generated
by the cue and those generated by the stimulus. This seems
to suggest that sufficiently different or variable stimuli might
drive different response processes. How much variability be-
tween stimuli is required to result in variability in drift pa-
rameters remains an open question.

Put together, the results presented here underscore the
benefits of using continuous response tasks and models,
which provide rich information for making inferences about
cognitive processes. This study not only established bench-
mark results for responses and response times in continu-
ous report, but showed that using a continuous response task
could grant insights that are not permitted by binary response
paradigms. Most notably, bimodal response distributions re-
veal that competing cue-drive and stimulus-driven processes
seem to drive bias in responses. This allowed us to extend
our theoretical understanding of bias in addition to providing
steps toward understanding how decision makers cope with
continuous selection tasks.
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