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Abstract

Neurocognitive tasks are frequently used to assess disordered decision making, and cognitive models of
these tasks can quantify performance in terms related to decision makers’ underlying cognitive processes.
In many cases, multiple cognitive models purport to describe similar processes, but it is difficult to
evaluate whether they measure the same latent traits or processes. In this article, we develop methods for
modeling behavior across multiple tasks by connecting cognitive model parameters to common latent
= constructs. This approach can be used to assess whether 2 tasks measure the same dimensions of
. cognition, or actually improve the estimates of cognitive models when there are overlapping cognitive
processes between 2 related tasks. The approach is then applied to connecting decision data on 2
behavioral tasks that evaluate clinically relevant deficits, the delay discounting task and Cambridge
gambling task, to determine whether they both measure the same dimension of impulsivity. We find that
the discounting rate parameters in the models of each task are not closely related, although substance
users exhibit more impulsive behavior on both tasks. Instead, temporal discounting on the delay
discounting task as quantified by the model is more closely related to externalizing psychopathology like
aggression, while temporal discounting on the Cambridge gambling task is related more to response
inhibition failures. The methods we develop thus provide a new way to connect behavior across tasks and
grant new insights onto the different dimensions of impulsivity and their relation to substance use.
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Translational Abstract

A key issue in understanding problems like addiction is identifying what psychological processes
contribute to the initiation and continuation of substance use, such as inhibiting desires for immediate
rewards (drugs) in favor of long-term goals (sobriety). The better we can quantify these processes using
experimental tasks and models of behavior, the better we can predict and eventually prevent substance
use. In this article, we develop methods for connecting behavior across different tasks and test whether
two different experimental paradigms are measuring the same psychological processes. We show that this
method can allow us to get more information about an individual and their propensity for substance use
by combining data from two tasks, the delay discounting task and the Cambridge gambling task. When
applied to these tasks, our approached showed that both tasks are predictive of substance use in heroin-,
amphetamine-, and multiple-substance-dependent individuals. However, the two tasks appear to be
measuring different dimensions or subtypes of impulsivity: The delay discounting task measures choice
impulsivity, which is related to self-report measures of substance use and propensity to favor rewards that
occur sooner in time (as opposed to waiting for long-term rewards); whereas the Cambridge gambling
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task appears to measure people’s ability to inhibit desires to act immediately, referred to as response
inhibition or action impulsivity. This method thus allows us to better understand how different behaviors
are related, identifying whether two different tasks or models measure the same or different psychological

processes.

Keywords: intertemporal choice, joint cognitive model, neurocognitive task, substance dependence,

Cambridge gambling task

Behavioral tasks are frequently used as a method of assessing
patterns of performance that are indicative of different kinds of
cognitive deficits. For example, people with deficits in working
memory might perform worse on a task that requires them to recall
information, or people with impulsive tendencies may find it
difficult to wait for rewards that are delayed in time. By analyzing
patterns of behavior, we can characterize the dysfunctions in
decision-making that predict or result from different mental health
or substance use disorders (Bickel & Marsch, 2001; Lejuez et al.,
2003; MacKillop et al., 2011; Zois et al., 2014). In turn, we can
understand how different traits put individuals at risk for substance
use or mental health problems, or design interventions aimed at
improving cognitive function to prevent or alleviate these prob-
lems (Bickel et al., 2016). Behavioral tasks can therefore grant
insight onto traits or characteristics that underlie risky, impulsive,
or otherwise disordered decision making both in the laboratory and
the real world.

A critical assumption of this approach to assessing decision
behavior is that the behavioral tasks used in these approaches
provide measures of common underlying traits or characteristics
that are related to disordered decision behavior. Naturally, each
task is vetted for reliability and some degree of predictive validity
before putting into widespread use as assessment tools. Thus, there
is typically good evidence to suggest that tasks like delay discount-
ing are reliable, reinforcing the view that they are measuring some
stable aspect of choice behavior (Simpson & Vuchinich, 2000).
However, there are also multiple tasks that purport to measure the
same trait or characteristic using different experimental paradigms.
This may be erroneous, as impulsivity is thought to be a multidi-
mensional construct with as many as three main factors: impulsive
choice, impulsive action, and impulsive personality traits (MacK-
illop et al., 2016). Impulsive choice is thought to reflect the
propensity to make decisions favoring an immediate reward over a
larger delayed reward, impulsive action is thought to reflect the
(in)ability to inhibit motor responses, and impulsive personality is
reflected in self-report measures of individuals’ (in)ability to reg-
ulate their own actions.

Within each of these delineations, there are multiple tasks or
methods that might serve as valid measures of one or more
dimensions of impulsivity. For example, there are a number of
self-report and behavioral measures that are designed to measure
people’s predispositions toward impulsive decision-making. Un-
derstanding the structure of impulsivity and how these different
measures are related is key for addressing a number of health
outcomes, as impulsivity is strongly implicated in a number of
psychiatric disorders, most prominently “reinforcer pathologies”
(Bickel, Yi, Landes, Hill, & Baxter, 2011) such as substance use
disorders (Dawe & Loxton, 2004; Moeller, Barratt, Dougherty,
Schmitz, & Swann, 2001) as well as eating disorders, gambling

disorder, and some personality disorders (de Wit, 2009; Petry,
2001). Delay discounting in particular has been proposed as a
prime transdiagnostic endophenotype of substance use disorders
and other reinforcer pathologies (Bickel, Jarmolowicz, Mueller,
Koffarnus, & Gatchalian, 2012, 2014). Obtaining reliable esti-
mates of impulsivity from behavioral tasks has both diagnostic and
prognostic value, as it cannot only help identify at risk individuals,
but also predict response to treatment, and offer the opportunity for
effective early prevention and interventions for addiction (Bickel
et al., 2011; Conrod, Castellanos-Ryan, & Strang, 2010; Donohew
et al., 2000; Vassileva & Conrod, 2018).

Because of the importance of impulsivity as a determinant of
health outcomes, there have been a variety of different paradigms
designed to assess different dimensions of impulsive behavior. For
example, both the Cambridge gambling task (CGT; Rogers et al.,
1999) and delayed reward discounting task (Kirby, Petry, &
Bickel, 1999) both aim to measure impulsive behavior, but they
use largely different methods to do so. The CGT measures impul-
sivity by gauging decision-makers’” willingness to wait in order to
make larger or smaller bets, generally requiring decision makers to
wait 5-20 s for potential bet values to “tick” up or down until it
reaches the bet value they want to wager. The decision maker
experiences these delays in real time during the experiment, wait-
ing on each trial in order to enter the bet they want to make as it
comes on-screen. Conversely, delay discounting tasks (DDT) such
as the Monetary Choice Questionnaire measure impulsivity as a
function of binary choices between two alternatives, where one
alternative offers a smaller reward sooner/immediately and the
other alternative offers a larger reward at a later point in time
(Ainslie, 1974, 1975; Kirby et al., 1999). The task paradigm for
the CGT lends itself to understanding how people respond to
short-term, experienced delays, while the DDT paradigm lends
itself better to understanding how they respond to more long-term,
described delays. While both situations can be construed as ones
where people have to inhibit their impulses to take more immedi-
ate payoffs versus greater delayed ones, which falls most naturally
under impulsive choice, it is possible that different dimensions of
impulsivity are related to behavior on either task.

Computational models of such complex neurocognitive tasks
parse performance into underlying neurocognitive latent processes
and use the parameters associated with these processes to under-
stand the mechanisms of the specific neurocognitive deficits dis-
played by different clinical populations (Ahn, Dai, et al., 2016).
Research indicates that computational model parameters are more
sensitive to dissociating substance-specific and disorder-specific
neurocognitive profiles than standard neurobehavioral perfor-
mance indices (Ahn, Ramesh, Moeller, & Vassileva, 2016; Haines,
Vassileva, & Ahn, 2018; Vassileva et al., 2013). Similarly, dy-
namic changes in specific computational parameters of decision-
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making, such as ambiguity tolerance, have been shown to predict
imminent relapse in abstinent opioid-dependent individuals
(Konova et al., 2019). This suggests that computational model
parameters can serve as novel prognostic and diagnostic state-
dependent markers of addiction that could be used for treatment
planning.

Based on evidence from other task domains, it seems likely that
differences in behavioral paradigms may be substantial enough to
evaluate two dimensions or domains of impulsivity. In risky
choice, clear delineations have been made between experience-
based choice, where risks are learned over time as a person
experiences different reward frequencies, and description-based
choice, where risks are described in terms of percentages or
proportions of the time they will see rewards. The diverging
behavior observed in these two paradigms, referred to as the
description-experience gap, illustrates that behavior under the two
conditions need not line up (Hau, Pleskac, Kiefer, & Hertwig,
2008; Hertwig & Erev, 2009; Wulff, Mergenthaler-Canseco, &
Hertwig, 2018). This appears to result from asymmetries in learn-
ing on experience-based tasks, where people tend to learn more
quickly when they have under- versus overpredicted a reward
(Haines, Kvam, & Turner, 2020). Given the evidence for this type
of gap in risky choice, it seems likely that a similar difference
between described (DDT) and experienced (CGT) delays may
result in diverging behavior due to participants learning from their
experiences of the delays.' Of course, it is not necessarily the case
that such a gap exists for the CGT and DDT paradigms and how
they measure impulsivity, but the diverging patterns of behavior in
risky choice should at least raise suspicion about the effects of
described versus experienced delays in temporal discounting.

Approach

So how do we test if these two different tasks are measuring the
same underlying dimension of impulsivity as measures of impul-
sive choice? The remaining part of the article is devoted to an-
swering this question. The first step is to gather data on both tasks
from the same participants, so that we can measure whether
individual differences in impulsive choice are expressed in ob-
served behavior on both tasks. For this, we utilize data from a large
study on impulsivity in lifetime substance dependent (in protracted
abstinence) and healthy control participants in Bulgaria (Ahn et al.,
2014; Ahn & Vassileva, 2016; Vassileva et al., 2018). This sample
includes both “pure” (monosubstance dependent) heroin and am-
phetamine users as well polysubstance dependent individuals and
healthy controls. The majority of substance dependent participants
in these studies were in protracted abstinence (i.e., not active users,
and were screened prior to participation to ensure they had no
substances in their system) but met the lifetime DSM-IV criteria
for heroin, amphetamine, or polysubstance dependence. They were
also not on methadone maintenance or on any other medication-
assisted therapy, unlike most abstinent opiate users in the United
States. This participant sample has multiple benefits for the current
effort: It both provides a set of participants who are likely to be
highly impulsive, increasing the variance on trait impulsivity; and
it provides an opportunity to compare the performance of the
models we examine in terms of their ability to predict substance
use outcomes.

The second step in testing whether the two tasks reflect the same
dimension of impulsive choice is to quantify behavior on the tasks
in terms of the component cognitive processes. This is done by
using cognitive models to describe each participant’s behavior in
terms of contributors like attention, memory, reward sensitivity,
and those relevant to impulsivity such as temporal discounting
(Busemeyer & Stout, 2002). Each parameter in the model corre-
sponds to a particular piece of the cognitive processes underlying
task behavior, and improves predictions of related self-report and
outcome measures over basic behavioral metrics like choice pro-
portions or mean response times (Fridberg et al., 2010; Romeu,
Haines, Ahn, Busemeyer, & Vassileva, 2019). They therefore
serve as the most complete and useful descriptors of behavior on
cognitive tasks, and their parameters correspond theoretically to
individual differences in cognition.

The third step is to construct a model of both tasks by relating
parameters of the cognitive models of each task to common
underlying factors like impulsivity. This is far from straightfor-
ward, as it requires both theoretical and methodological innova-
tions. In terms of theory, a modeler has to make determinations
about which parameters should be related to common latent con-
structs, and therefore how model parameters should relate to one
another across tasks. For our present purposes this is made rea-
sonably straightforward, as the most common models of both CGT
and DDT include parameters describing temporal discounting rates
that determine how the subjective value of a prospect decreases
with delays, but in other cases it may be a case of exploratory
factor analysis (using cognitive latent variable model structures
like we describe below) and/or model comparison between differ-
ent latent factor structures. From a practical standpoint, the mod-
eler also requires methods for simultaneously fitting the parame-
ters of both models along with the latent factor values. Using a
hierarchical Bayesian approach, Turner et al. (2013) developed a
Jjoint modeling approach to simultaneously predict neural and
behavioral data from participants performing a single task. These
methods connect two sources of data to a common underlying set
of parameters, either constraining a single cognitive model using
multiple sources of information (Turner, Rodriguez, Norcia, Mc-
Clure, & Steyvers, 2016) or connecting separate models via latent
factor structures (Turner, Wang, & Merkle, 2017). The benefit of
the joint modeling approach is that all sources of data are formally
incorporated into the model by specifying an overarching, typi-
cally hierarchical structure. As shown in a variety of applications
(Turner et al., 2013, 2016, 2017; Turner, Van Maanen, & Forst-
mann, 2015), modeling the covariation of each data modality can
provide strong constraints on generative models, and these con-
straints can lead to better predictions about withheld data when the
correlation between at least one latent factor is nonzero (Turner,
2015).

Similarly, Vandekerckhove (2014) developed methods for con-
necting personality inventories to cognitive model parameters,
creating a cognitive latent variable model structure that predicts
both self-report and response time (and accuracy) data from the

! Notwithstanding postexperiment consequences of the choices, such as
playing out a randomly selected question. While these consequences help
to make the selections more real, a participant does not receive experiential
feedback about their choice before making another selection, and thus this
experience is irrelevant to observed behavior on the task.
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same participants simultaneously. As with the joint modeling
approach, it allows data from one measure to inform another by
linking them to a common underlying factor. In this paper, we
develop methods based on the joint modeling and cognitive latent
variable modeling approaches that can be used to connect behavior
on multiple cognitive tasks to a common set of latent factors.

Finally, we must test the factor structure underlying task per-
formance by comparing different models against one another.
Depending on how the models are fit, different metrics will be
available for model comparison. Taking advantage of the fully
Bayesian approach, we provide a method for arbitrating between
different model factor structures using a Savage-Dickey approxi-
mation of the Bayes factor (Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010). This method is particularly useful because it
allows us to find support for the hypothesis that the relationship
between parameters is zero, indicating that performance on the
different tasks is not related to a common underlying factor but to
separate ones. In effect, we use the Bayes factor to compare a
one-factor against a two-factor model, directly yielding a metric
describing the support for one model over the other given the data
available.

To preview the results, the Bayes factor for all groups (amphet-
amine, heroin, polysubstance, and controls) favors a multidimen-
sional model of impulsivity in DDT and CGT, suggesting that the
different paradigms measure impulsive action and impulsive
choice/personality. This is an interesting result in itself, but also
serves to illustrate how the joint modeling and cognitive latent
variable modeling approaches can be used to make novel infer-
ences about the factor structure underlying different tasks. The
remainder of the article is devoted to the methods for developing
and testing these models, with model code provided to assist others
in carrying out these types of investigations.

Background Methods

Although both tasks are relatively well-established as tools in
clinical assessment, it is helpful to examine how each one assesses
impulsivity, both in terms of raw behavior and in terms of model
parameters. We first cover the basic structure of the DDT and
CGT, then the most common models of each task, and finally how
they can be put together using a joint modeling framework.

It is worth noting that there are several competing models of the
DDT. For our purposes, we primarily examine the hyperbolic
discounting model (Chung & Herrnstein, 1967; Kirby & Herrn-
stein, 1995; Mazur, 1987), as it is presently the most widely used
model of preference for delayed rewards. However, we repeat
many of the analyses presented in this article by using an alternate
attention-based model of delay discounting, the direct difference
model (Dai & Busemeyer, 2014), in the Appendix. The main
conclusions of the article do not change depending on which
model is used, but the direct difference model tends to fit better for
some substance use groups and its parameters are somewhat more
closely related to the CGT model parameters.

Tasks

A total of 399 participants took part in a study on impulsivity
among substance users in Sofia, Bulgaria. This included 75 “pure”
heroin users, 73 “pure” amphetamine uses, 98 polysubstance users,

and 153 demographically matched controls, including siblings of
heroin and amphetamine users. Lifetime substance dependence
was assessed using DSM-IV criteria, and all participants were in
protracted abstinence (met the DSM—-IV criteria for sustained full
remission).

In addition to the Monetary Choice Questionnaire of DDT and
CGT described below, all participants also completed 11 psychi-
atric measures including an 1Q assessment using Raven progres-
sive matrices (Raven, 2000), the Fagerstrom test for nicotine
dependence (Heatherton, Kozlowski, & Frecker, 1991), structured
interviews and the screening version of the Psychopathy Checklist
(Hare et al., 1990; Hart, Cox, & Hare, 1995), and the Wender Utah
rating scale for attention deficit hyperactivity disorder (ADHD;
Ward, 1993). They also completed personality measures including
the Barratt Impulsiveness Scale (Patton, Stanford, & Barratt,
1995), the UPPS Impulsive Behavior Scale (Whiteside & Lynam,
2001), the Buss-Warren Aggression Questionnaires (Buss & War-
ren, 2000), the Levenson self-report psychopathy scale (Levenson,
Kiehl, & Fitzpatrick, 1995), and the Sensation-Seeking Scale
(Zuckerman, Kolin, Price, & Zoob, 1964). The other behavioral
measures they completed included the Iowa gambling task
(Bechara, Damasio, Damasio, & Anderson, 1994), the immediate
memory task (Dougherty, Marsh, & Mathias, 2002), the Balloon
Analogue Risk Task (Lejuez et al., 2002, 2003), the go/no-go task
(Lane, Moeller, Steinberg, Buzby, & Kosten, 2007), and the stop
signal task (Dougherty, Mathias, Marsh, & Jagar, 2005). These are
used later on to assess which dimensions of impulsivity are pre-
dicted by which model parameters.

Below we describe the main tasks of interest: the Monetary
Choice Questionnaire of DDT and CGT. The participants in these
tasks were recruited as part of a larger study on impulsivity, and
they completed both tasks, allowing us to assess the relation
between performance on the DDT and the CGT for each person
and for each group to which they belonged. More details on the
study and participant recruitment are provided in Ahn et al. (2014)
and Ahn and Vassileva (2016).

Delay discounting task (DDT). The DDT was developed for
use in behavioral studies of animal populations as a measure of
impulse control (Ainslie, 1974; Chung & Herrnstein, 1967). Per-
formance on the delay discounting task has been linked to a
number of important health outcomes, including substance depen-
dence (Bickel & Marsch, 2001) and a propensity for taking safety
risks (Daugherty & Brase, 2010). Task performance and the pa-
rameters of the cognitive model (the hyperbolic discounting
model) are frequently used as an indicator of temporal discounting,
impulsivity, and a lack of self-control (Ainslie & Haslam, 1992).

The structure of each trial of the delay discounting task features
a choice between two options. The first is a smaller reward (e.g.,
$10 immediately), so-called the “smaller, sooner” (SS) option. The
second is a larger reward (e.g., $15) at a longer delay (e.g., 2
weeks), referred to as the “larger, later” (LL) option. This study
used the Monetary Choice Questionnaire designed by Kirby and
Marakovi¢ (1996), which features 27 choices between SS and LL
options. Often, impulsivity is quantified as simply the proportion
of responses in favor of the SS option, reflecting an overall
tendency to select options with shorter delays. However, this can
be confounded with choice variability—participants who choose
more randomly regress toward 50% SS and LL selections, which
may make them appear more or less impulsive relative to other
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participants in a data set. Therefore, the model we use includes a
separate choice variability parameter, which describes how con-
sistently a person chooses an option that they would appear to
subjective value higher. The remaining temporal discounting pa-
rameter k then quantifies how much options are valued dependent
on their delay.

Cambridge gambling task (CGT). The CGT (Rogers et al.,
1999) is a two-stage gambling paradigm where participants decide
between colors and then wager a percentage of their accumulated
points (exchanged for money at the end of the study) on having
made the correct decision. The paradigm is shown in Figure 1.
Participants began a session with 100 points. On each trial, they
were shown 10 boxes, each of which could be red or blue. They
were told that a token was hidden randomly (uniform distribution)
in one of the boxes. In the choice stage, the participant responded
whether they believe the token was hidden in a red or blue box.”
Once they made their choice, the betting stage of the trial began.

In the betting stage, participants would see a certain number of
points appear on the screen, which either increased (ascending
condition) or decreased (descending condition) in real time. The
number of points would tick up from 5% of their points, to 25%,
50%, 75%, and then 95% of their points in the ascending condi-
tion, or down from 95% to 75, 50, 25, and then 5% in the
descending condition. The points would tick up or down every 5 s.
Participants would enter the number of points they wanted to bet
by clicking the mouse when it hit the number they were willing to
wager.

Naturally, a participant would have to wait longer to make larger
bets in the ascending condition and wait longer to make smaller
bets in the descending condition. This allows for the propensity to
make greater bets to be dissociated from the propensity to stop the
ticker earlier (or later). Impulsivity in this paradigm is measured as
a function of how long participants are willing to wait for the ticker
to go up or down before they terminate the process and make a bet.
Participants who are particularly impulsive and unwilling to wait
will tend to make small bets in the ascending condition and make
large bets in the descending condition. Those who are less impul-
sive will tend to make bets that are more likely to maximize the
number of points they receive, regardless of the delays associated
with the bets.

In this way, the CGT measures a number of important cognitive
processes aside from impulsivity as well. Participants’ propensity
to choose the “correct” (majority) color, their bias toward different
choices or bets, and the consistency with which they make partic-

1.Choose: H OR B ?
2.Bet:

5s 5s 5s 5s
Ascending: 5% - 25% -®> 50% > 75% <> 95%
5s 5s 5s 5s
Descending: 95% 3> 75% -®> 50% -®> 25% -®> 5%

Figure 1. Diagram of the Cambridge gambling task paradigm. See the
online article for the color version of this figure.

ular choices or bets are all factors that will influence the behavioral
data. The cognitive model—which we refer to as the Luce choice/
bet utility model—quantifies each of these tendencies, allowing us
to distill the effect of impulsivity from these other propensities and
processes.

Models

Cognitive models for both tasks have been tested against sub-
stance use data in previous work. The hyperbolic delay discounting
model in particular has been widely used and is predictive of a
number of health outcomes related to substance use and gambling
(Reynolds, 2006), while the model of the CGT was only recently
developed and applied to substance use data (Romeu et al., 2019).
Both models are capable of extending our understanding of per-
formance on both tasks by quantifying participant performance in
terms of cognitively meaningful parameters, and using these pa-
rameters to predict substance use outcomes (better than raw be-
havioral metrics like choice proportions Busemeyer & Stout, 2002;
Romeu et al., 2019).

In this section, we review the structure of each model and then
examine what additions are necessary in order to test whether they
measure the same or different dimensions of impulsivity. Both
models contain a parameter related to temporal discounting, where
outcomes that are delayed have a subjectively lower value. Higher
values of these parameters lead participants to select options that
are closer in time and are therefore linked to impulsivity, so it is
only natural to try connecting them to a common latent factor. The
joint modeling method we present allows us to do so, as well as
permits us to test whether they are measuring the same underlying
construct using a nested model comparison with a Bayes factor.

In the following sections we focus on the hyperbolic discounting
model of the delay discounting task, but a description of the direct
difference model—which fits several of the substance use groups
better than the hyperbolic model—is also presented in the Appen-
dix.

Hyperbolic discounting model. Although early accounts of
how rewards are discounted as they are displaced in time followed
a constant discounting rate, represented in an exponential discount-
ing function derived from behavioral economic theory (Camerer,
1999), the most common model of discounting behavior instead
uses a hyperbolic function (Ainslie & Haslam, 1992; Mazur,
1987), which generally fits human discounting behavior better and
accounts for more qualitative patterns such as preference reversals
(Dai & Busemeyer, 2014; Kirby & Herrnstein, 1995; Kirby &
Marakovi¢, 1995). Certainly, other models could be used to ac-
count for behavior on this task, and we test one such model in the
Appendix (the direct difference model Cheng & Gonzilez-Vallejo,
2016; Dai & Busemeyer, 2014). Fortunately, the exact model of
discounting behavior seems not to substantially affect the conclu-
sions of the procedure reported here.

The hyperbolic discounting model uses two parameters. The
first is a discounting rate k, which describes the rate at which a
payoff (x) decreases in subjective value (v(x, 7)) as it is displaced
in time (7).

2 The “best” choice would be to select whichever color constituted more
boxes (e.g., red if there were six red/four blue or blue if there were one
red/nine blue, but participants did not always follow the best choice.
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1

v = T8 (D

Higher values of k will result in options that are further away in
time being discounted more heavily. Because delay discounting
generally features one smaller, sooner option and one larger, later
option, a higher k will result in more choices in favor of the
smaller, sooner option because the greater impact of the delay in
the later option.

The second parameter m determines how likely a person is to
choose one option over another given their subjective values
v(x,, t;) and v(x,, 1,). The probability of choosing the larger, later
option (x,, t,; where x, > x, and #, > t,) is given as

1
I+ exp(=m - [v(xy, 1) — v(xy, 1)])

Pr(choose LL) = 2)

Higher values of m will make alternatives appear more distinc-
tive in terms of choice proportions, resulting in a more consistent
choice probability. Lower values for m make alternatives appear
more similar, driving choice probabilities toward 0.5.

Because the estimates of k tend to be heavily right-skewed, it is
typical to estimate log(k) instead of k to have an indicator of
impulsivity that is close to normally distributed. Therefore, we use
the same natural log transformation of k when estimating its value
in all of the models presented here—this is particularly important
in the joint model, where the exponential of the underlying impul-
sivity trait value must be taken to obtain the k values for each
individual (see Figure 2).

Luce choice/bet utility model. The Luce choice/bet utility
model for the CGT uses four parameters, reduced by one from the
original model presented by Romeu et al. (2019) in order to reduce
the likelihood of failing to recover parameters due to correlations
among them (in the original model, there was a utility parameter
assigned to bet payoffs, but this frequently traded off with the bet
variability parameter vy, described below). The first two parameters
o and c affect the probability of choosing red or blue as the favored
box color. The value of ¢ controls the bias for choosing red or blue.
A value greater than .5 indicates a bias toward choosing red,
whereas a value less than .5 indicates a bias toward choosing blue.
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Figure 2. Diagram of the structure of the joint model. See the online
article for the color version of this figure.

The value of a determines how responsive a decision maker is to
shifts in the number of red and blue boxes. Greater values of a will
make a person more sensitive to the number of boxes and therefore
more likely to select whichever color appears in greater proportion,
whereas smaller values of a will make them less sensitive to the
proportion of red and blue boxes and therefore more likely to
select randomly. Put together, the probability of choosing “red” as
the favored box color, Pr(R), is given as a function of the number
of red boxes (Ng; a number between 0 and 10) and the parameters
o and c:

_ c-Ng
PR = s T (=) (10 = Ny~ )

The probability of giving different bet values (either 5%, 25%,
50%, 75%, or 95%) depends on the decision made during the
choice stage as well as on the parameters relevant to behavior on
the betting component of the CGT. Once a choice is made, the bet
is conditioned on that decision. In particular, the probability of the
prior choice being correct enters into the probability of making
different bets. Formally, the expected utility of making any par-
ticular bet (EU(B), where B is a proportion between 0 and 1) is
computed as a function of the likelihood of being correct (Pr(C))
and the current number of points (pts).?

EUB) =pts-(Pr(C)-(1+B)+ (1 —Pr(C))-(1—-B)) &)

If a decision maker selected their highest-utility options with no
effect of delay, then they would simply stop the counter when it
reached the bet (out of B = .05, .25, .5, .75, or .95) that maximized
EU(B) regardless of the time it took the ticker to reach that bet
value. However, time becomes a factor when waiting imposes a
cost that affects the utility of the different bets. This is accounted
for by including an additional parameter 3 that describes the cost
associated with waiting one additional unit of time. The amount of
time a person has to wait to make a particular bet 7, depends on
whether they are in the ascending or descending ticker condition,
such that, for B = .05, .25, .5, .75, or .95, respectively:

T — {0, 1,2,3,4 if ascending )
B~ 14,3,2,1,0 if descending

The adjusted utility of giving a particular bet AU(B, 3) is then
given by multiplying the cost of each unit of time (3 by the time
associated with the bet T';:

AU(B.B)=EUB) —B-Tp (6)

Finally, these adjusted utilities for the possible bets enter into
Luce’s choice rule (Luce, 1959) to map their continuous expected
utilities into a probability of making each possible bet b = {b,, b,,
bs, by, bs} = {.05, .25, .5, .75, .95}. The consistency with which
a decision maker selects the highest-utility bet is determined by the
bet variability parameter y. Higher values of y correspond to more
consistently choosing the highest-utility bet, while lower values of
v lead a person to choose more randomly:

3 Note that this simply uses a linear utility rather than a power function.
This is mainly because including the additional parameter for the exponent
of a power utility function introduces strong interparameter correlations
that make it hard to recover the bet variability and time discounting
parameters.
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exp(y - AU(b,, B))
o exp(y-AU(b;, B)

Note that this is the same Luce choice rule used to determine the
probabilities of making different choices (Equation 3). To obtain
the joint distribution of choice and bet probabilities—that is, the
likelihood we actually want to estimate—this must be calculated
for both “red” and “blue” choices. In total, this yields a probability
distribution over the 10 possible selections: Pr(C = red, B = .05),
Pr(C = blue, B = .05), Pr(C = red, B = .25), and so on.

This model is shown on the left side of Figure 2. To fit the
model in a hierarchical Bayesian way, we assume that each of the
individual-level parameters ¢, o, B, and vy are drawn from a
group-level distribution determined by the participant’s substance
use classification. The JAGS code for this model is available on
the Open Science Framework at osf.io/e46zj/.

Joint model. The joint model aims to connect elements of the
two models to a common latent construct. In this case, both tasks
and models purport to measure impulsive choice, a dimension of
impulsivity measured through decision tasks like these. Impulsive
choice proclivity is measured via the k parameter in the hyperbolic
discounting model, and the 3 parameter in the Luce choice/bet
model of the CGT. Joint models are theoretically capable of
putting together many different tasks and measures, but as this is
the first time it has been applied to modeling behavior across tasks,
we have chosen to make the process simple by only connecting the
two models. Therefore, the number of new elements needed to
construct the joint model is minimal.

One of the innovations here is to add a latent variable on top of
the cognitive model parameters that describes a decision maker’s
underlying tendency toward impulsive choice. This is shown as the
blue region of Figure 2. This impulsivity (Imp) variable is then
mapped onto k and 3 values through linking functions f;,,,(Imp)
and f.s(Imp), respectively. In essence, we are constructing a
structural equation model where the measurement component of
the model consists of an established cognitive model of the task.
The advantage of using cognitive models over a simple statistical
mapping (usually linear with normal distributions in structural
equation modeling) is that the cognitive models are able to better
reflect not only performance on the task but the putative generative
cognitive processes. This makes the parameters of the model,
including the estimated values of impulsivity and the connections
between the tasks, more meaningful and more predictive of other
outcomes (Busemeyer & Stout, 2002).

To connect the impulsivity variable to k in the hyperbolic
discounting model, we used a simple exponential link function

Pr(B=0b;) =

)

k = fppr{(Imp) = exp(Imp) (®)

Readers familiar with structural equation modeling will know
that one of the parameters of the model will need to be fixed in
order to identify them. This is done by fixing the loading of k onto
impulsivity to be 1; there is no free parameter in f,,,,~ Conversely,
the load of 3 onto impulsivity adds two free parameters as part of
a linear mapping, including an intercept (giving a difference in
mean between log(k) and ) and slope (mapping variance in log(k)
or Imp to variance in ().

B = fegrImp) = by + begr- Imp )

The remaining parameters inherited from the constituent models
are m (DDT) and a, v, and ¢ (CGT). This essentially completes the
joint model. The impulsivity values for each individual are set hier-
archically, so that each person has a different value for /mp but they
are constrained by a group-level distribution of impulsivity from their
substance use group. The values of b, and b, are not set hierar-
chically but rather fixed within a group, as variation in these param-
eters across participants would not be distinguishable from variation
in Imp values.

Simulation Studies

One of the most fundamentally important aspects of testing a
cognitive model is to ensure that it can capture true shifts in the
parameters underlying behavior (Heathcote, Brown, & Wagenmak-
ers, 2015). This is difficult to assess using real data, as we do not
know the parametric structure of the true generating process. Instead,
a modeler can simulate a set of artificial data from a model with a
specific set of parameters and then fit the model to that data in order
to see if the estimates correspond to the true underlying parameters
that were used to create the data in the first place. This model recovery
process ensures that the parameter estimates in the model can be
meaningful; if model recovery fails and we are unable to estimate
parameters of a true underlying cognitive process, then there is noth-
ing we can conclude from the parameter estimates because they do not
reflect the generating process. If model recovery is reasonably suc-
cessful, then at least we can say that it is possible to apply the model
to estimate some properties of the data.

This is particularly important to note because the hyperbolic
discounting model—a popular account of performance on the
DDT—can often be hard to recover using classical methods like
maximum likelihood estimation or even nonhierarchical Bayesian
methods (Molloy et al., 2020). This problem can be addressed by
using a hierarchical Bayesian approach where parameter estimates
for individual participants are constrained by a group-level distri-
bution and vice versa (Kruschke, 2014; Shiffrin, Lee, Kim, &
Wagenmakers, 2008). The five-parameter version of the CGT
(Romeu et al., 2019) suffers from similar issues, but when reduced
to four parameters by reducing the power function used for com-
puting utilities to a linear utility and fit in a hierarchical Bayesian
way, it is possible to recover as well.

For both models, the simulated data were generated so that they
would mimic the properties of the real data to which the model was
later applied. To this end, the simulations used 150 participants
(approximately the size of a larger substance use group; similar but
slightly less precise results can also be obtained for 50- or 100-
participant simulations), 27 unique data points per participant for
the DDT, and 200 unique data points per participant for the CGT.
Participants in the real CGT task varied in terms of the number of
points they had accumulated going into each trial, meaning that the
bets they could place could differ from trial to trial. To compensate
for this, the simulated trials randomly selected from a range of
possible point values (from 5 [the minimum] to 200 points) as the
starting value for each trial. The rest of the task variables—
including payoffs and delays in the DDT, and box proportions and
ascending/descending manipulation in the CGT—were set accord-
ing to their real values in the experiments.

The hyperbolic discounting model used the k, m parameter
specification, where k is the discounting rate and m corresponds to
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Figure 3. Parameter recovery for data simulated from the hyperbolic
discounting model (DDT) parameters when the task data are fit alone. See
the online article for the color version of this figure.

the choice variability parameter in a softmax decision rule. Thanks
to the hierarchical constraints imposed on the individual-level
parameters, it was possible to recover both of these parameters
with reasonable precision when the delay discounting task was fit
individually. The results of the simulation and recovery are shown
in Figure 3. The x-axis displays the true value of each individual’s
k or m value, and the y-axis displays the value estimated from the
model. The values of k are shown on a log scale, as these values
tend to be much closer to log-normally than normally distributed.
The linear (r) and rank (p) correlations are also displayed as
heuristics for assessing how well these parameters were recovered.
While the quality was generally good, particularly considering
there were only 27 unique data points for each participant, there is
potential room for improvement in estimating each parameter. As
we show later, the joint model can actually assist in improving the
quality of fits like these where data is sparse.

We repeated this procedure for the Luce choice/bet utility model
of the CGT as well. As before, the ranges of individual-level
parameters and the group-level mean(s), along with sample size of
n = 150, were set at values that were similar to those we could
expect to encounter in real data. This allowed us to assess the
fidelity with which we might expect to estimate any true underly-
ing variation in these processes in the real data.

The greater number of parameters in the Luce choice/bet utility
model (four) was somewhat balanced out by the greater number
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of trials per participant, allowing for reasonable parameter
recovery. The results are shown in Figure 4. The color bias (c)
parameter was the most constrained of these parameters, vary-
ing on [0, 1] rather than [0, %) or (-, %) like most of the other
parameters, and so it was recovered with high fidelity. Probability
sensitivity, time cost, and bet variability were also reasonably
well-recovered, although the greater complexity of the task and
more subtle influence of each individual variable makes them
more difficult to recover when compared with the hyperbolic
discounting model and DDT.

Finally, we simulated and recovered data from the joint model
shown in Figure 2. The value for Imp was set as the log of the
value of k in the DDT, so that the linking function f,,,(Imp) was
simply an exponential (f,,,(Imp) = exp(Imp)). The value of 3 in
the CGT was a linear function of Imp, set as fog; = by + begr -
Imp. In order to make the values of 3 reasonable, we set b, = 5.5
and b, = 1 in the simulated data. There was also noise inserted
into the resulting 3 values (which was estimated by the model as
well) so that the standard deviation of 3 in the simulated CGT data
was o5 = 2.

The results of the parameter recovery for the joint model are
shown in Figure 5. We were able to recover the b, and b g
parameters with reasonable accuracy, and actually improved the
recovery of the delay discounting model. Both k and m were
recovered with greater fidelity in the joint model correlations
between true and estimated parameters were .83 and .75 in the
nonjoint model versus .85 and .84 in the joint model for k and m,
respectively. However, the noise introduced into the model by
using the value of & to predict 3 had a mixed effect on the recovery
of the CGT model parameters. Because there were substantially
fewer data from the DDT (27 trials of binary choice) relative to the
CGT (200 trials with both binary choice and a multinomial bet, for
400 data points), the uncertainty in estimates from the DDT
translated into uncertainty in some CGT parameter estimates.
Because of this, the joint model only seemed to improve estimation
of the color bias parameter, while keeping probability sensitivity
and time cost relatively similar and decreasing precision of the bet
variability estimates. A major benefit of joint modeling is its
ability to constrain estimates with multiple sources of data (Turner
et al., 2015). The benefit seems to go mainly in the direction of the
task with less data, as in previous work (Turner, 2015), thanks to
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Figure 4. Parameter recovery for data simulated from the Cambridge gambling task model when the task is fit
alone (i.e., not a joint model with hyperbolic discounting model/delay discounting task). See the online article

for the color version of this figure.
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Figure 5. Parameter recovery for data simulated from a joint hyperbolic discounting and Cambridge gambling
task model where k and 3 are related. Parameters for the joint model that are not included in the individual
models are shown at the bottom right. See the online article for the color version of this figure.

the richer information in the CGT constraining estimates in the
DDT.

Overall, it seems that we should be able to identify real differ-
ences in the parameter values given the sample sizes in the real
data. The joint modeling approach will also allow us to discrimi-
nate between one-factor and two-factor models by allowing us to
estimate the b5 factor. If there is no connection between tasks,
the value of this slope parameter should turn out to be zero, while
it should clearly be estimated as nonzero if there is a true under-
lying connection between the tasks as in our simulations (see
Figure 5). In the next section, we show how these diverging
predictions can be leveraged by a Bayes factor analysis that
quantifies the evidence for or against the value of b~ being zero.

Application to Substance Users’ Data

With the simulations establishing the feasibility of the approach,
we can examine the connection between the DDT and CGT in real
data. Each model was fit separately to each of the substance use
groups: heroin (red in all plots below), amphetamine (yellow),
polysubstance (purple), and control (blue). Dividing the partici-
pants by group assists in estimation of the models because the
group-level parameters from the hierarchical Bayesian model are
likely to differ from group to group. It also allows us to evaluate
the connection between tasks within each substance use group: It
could very well be the case that the tasks are positively (or
negatively) associated within groups of substance users but not for
controls, for example. Naturally, separating substance use groups
also allows us to compare the group-level model parameters to
establish any identifiable differences in cognitive processing be-
tween different types of substance users.

To examine whether the discounting rates k in the DDT and 3
in the CGT are related, we compare two different instances of the
joint model. The first allows all parameters described in the pre-
vious section to vary freely: The group- and individual-level
parameters are all fit to the data and b, can take any value. We
refer to this as the one-factor model, because both tasks are
connected to the same latent impulsivity factor. The second model,
which is nested within the first, forces b, to be equal to 0, so that
there is no connection between the estimates of k and estimates of
. In essence, this forces the two tasks to depend on separate
dimensions of impulsivity and is equivalent to fitting the hyper-
bolic discounting model and Luce choice/bet utility model sepa-
rately to each participant’s data. This constrained model is there-
fore referred to as the two-factor model, as it posits that separate
dimensions of impulsivity are responsible for performance on the
two tasks.

Estimates

It is helpful to get a first impression by comparing the discount-
ing rates between tasks for each participant. These estimates of
log(k) (x-axis) and [ (y-axis) for each individual are shown in
Figure 6. The corresponding colored lines also show the estimated
relationship between the two parameters. These estimates should
be positively related if there are overlapping processes in the DDT
and CGT (the log transformation is monotonic, preserving order
between them), but this does not seem to be the case whether we
evaluate them. As shown in the two-factor model (right), the
values of log(k) and P are largely unrelated when they are sepa-
rately estimated. Nevertheless, we can see that the estimates of
both parameters tend to be higher for substance dependent indi-




































	Testing the Factor Structure Underlying Behavior Using Joint Cognitive Models: Impulsivity in De ...
	Approach
	Background Methods
	Tasks
	Delay discounting task (DDT)
	Cambridge gambling task (CGT)

	Models
	Hyperbolic discounting model
	Luce choice/bet utility model
	Joint model


	Simulation Studies
	Application to Substance Users’ Data
	Estimates
	Factor Structure Comparison
	Relation to Outcome Measures

	Discussion
	References
	Appendix Direct Difference Model of Delay Discounting
	Individual Estimates
	Group Level Estimates
	Bayes Factor Comparison
	Formal Specification of the Models



