
Psychological Review. c©2020, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite
without authors’ permission. The final article will be available, upon publication, via its DOI: 10.1037/rev0000215

A distributional and dynamic theory of pricing and preference

Peter D. Kvam
University of Florida

Jerome R. Busemeyer
Indiana University

Theories that describe how people assign prices and make choices are typically based on the
idea that both of these responses are derived from a common static, deterministic function used
to assign utilities to options. However, preference reversals – where prices assigned to gambles
conflict with preference orders elicited through binary choices – indicate that the response
processes underlying these different methods of evaluation are more intricate. We address
this issue by formulating a new computational model that assumes an initial bias or anchor
that depends on type of price task (buying, selling, or certainty equivalents) and a stochastic
evaluation accumulation process that depends on gamble attributes. To test this new model, we
investigated choices and prices for a wide range of gambles and price tasks, including pricing
under time pressure. In line with model predictions, we found that price distributions possessed
stark skew that depended on the type of price and the attributes of gambles being considered.
Prices were also sensitive to time pressure, indicating a dynamic evaluation process underlying
price generation. The model out-performed prospect theory in predicting prices, and addition-
ally predicted the associated response times, which no prior model has accomplished. Finally,
we show that the model successfully predicts out-of-sample choices and choice response times.
This price accumulation model therefore provides a superior account of the distributional and
dynamic properties of price, leveraging process-level mechanisms to provide a more complete
account the valuation processes common across multiple methods of eliciting preference.
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Exchanges where sums of money are traded for a desired
choice option form an important part of people’s daily eco-
nomic behavior. As part of these exchanges, both consumers
and producers frequently have to perform the task of evalu-
ating the price of choice options by selecting a satisfactory
buying price, selling price, or certainty equivalent. For ex-
ample, people often evaluate the price for selling an invest-
ment, the price for buying a product, or the price equivalent
of medical treatment for insurance. This ability to estimate
the monetary value of choice options is a core component of
a person’s capacity to form preferences and make decisions.
Despite the ease with which people seem to do this, the as-
signment of a monetary value to a choice option is based
on complex, dynamic, and stochastic mental processes that
involve both cognitive and affective components.
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Traditionally, theories of price judgments have been based
on deterministic and static utility theories. The basic idea
behind these theories is that prices are determined by finding
the exact monetary value that makes the person indifferent
between the utility of the choice option and the utility of the
monetary value (see, e.g., Luce, 2000; Becker et al., 1964).
However, a deterministic representation of this task fails to
account for the fact that people cannot reliably assign a price
to a risky prospect (Schoemaker & Hershey, 1992; Butler &
Loomes, 2007). Instead, there is always some variability in
the price that is assigned by a person to the same choice op-
tion on different occasions. Utility theorists typically try to
avoid this response variability problem by asking for a single
price or, if several replications are obtained, by computing
the mean or median price given to an alternative. In fore-
going the distribution of prices, this method ignores the fact
that the variability in price responses changes systematically
across choice options with different attributes (Bostic et al.,
1990), and furthermore ignores interesting properties con-
cerning the shape of price distributions.

A further problem with traditional utility theories is that
they are static, and so they fail to describe the dynamic cog-
nitive processes that generate a price response. Instead, static
utility-based theories tend to describe prices “as if” a person
is transforming the attributes of an option and adding or mul-
tiplying them to compute the overall value (Berg & Gigeren-

1



2 KVAM & BUSEMEYER

zer, 2010), but do not describe the decision processes that
underlie these transformations. As a result, they fail to pre-
dict the outcomes of any process measures, such as response
times or process tracing data. Pachur et al. (2018) sought to
remedy this issue by pursuing a link between eye tracking
data and the parameters of prospect theory, and took the first
steps toward relating the static structure of past models to the
dynamic structure of cognitive processes, but stopped short
of constructing a generative model of value or price. As we
show in this paper, such a model is critical to understand-
ing price because the time allocated to constructing a price
response can influence the distribution of prices that is even-
tually assigned to a choice option. Therefore, a static model
will not only provide an incomplete picture of the cognitive
processes underlying valuation, but it will also fail to make
predictions concerning the effect of internally or externally
controlled stopping time on the price that is eventually se-
lected.

One final area where these models tend to fail is in ac-
counting for preference reversals, where one choice alter-
native A is selected over B in a binary choice task, but B
is priced higher than A when they are viewed separately
and assigned prices (Lichtenstein & Slovic, 1971; Slovic &
Lichtenstein, 1983). One popular explanation is that the ac-
tual utilities or probability weights assigned to options dif-
fer between binary choice and pricing (Tversky et al., 1990).
However, an alternative proposal is that the underlying rep-
resentations of utility are coherent across choices and prices,
and instead the response processes used to generate the two
measures of preference differ (J. G. Johnson & Busemeyer,
2005). The latter idea is intuitively more appealing because
it allows for internally consistent mechanisms for valuation,
even if different empirical measures appear to diverge.

Theoretical and empirical basis

The purpose of this article is to build and expand on this
previous work by developing and empirically testing a new
dynamic and stochastic model of choice and pricing. It builds
on previous work that empirical investigated these various
forms of judgments, much of which has focused on the dif-
ferences in prices between buyers and sellers, frequently re-
ferred to as an endowment effect (reviewed in Morewedge &
Giblin, 2015). In many cases, this effect has been explained
through loss aversion, where buyers treat the failure to pur-
chase an item as foregoing a potential gain while sellers treat
the sale of an item as a potential loss. Because people ap-
pear to weight losses more heavily than gains (Kahneman
& Tversky, 1979; Kahneman et al., 1991) sellers place more
value on losing the item than buys do on acquiring it. This
is typically instantiated as an asymmetry between losses and
gains in the utility function, using a parameter that multiplies
the utility of losses by a constant λ relative to gains.

However, this only brushes the surface in terms of the cog-

nitive mechanisms underlying buyer-seller differences. Work
by Pachur & Scheibehenne (2012) empirically investigated
these gaps and the potential underpinnings, and showed that
these differences were due at least in part to differences in in-
formation search between buyers and sellers. They observed
that sellers were more likely to terminate information sam-
pling about potential prospects after experiencing a positive
outcome (indicating that the potential sale of a choice option
should be worth more) while buyers were more likely to ter-
minate search after a negative outcome. They additionally
showed that the buyer-seller gap was reduced when people
gathered more information prior to making a decision, sug-
gesting that a key mechanism underlying these differences is
the criterion or threshold for stopping search and generating
a price.

Further work on the endowment effect has suggested that
process of sampling different aspects of the stimulus over
time also leads to differences between buyers and sellers, in-
cluding the order in which they are considered (query theory,
E. J. Johnson et al., 2007; Weber & Johnson, 2011). This
suggests that initially considered information interacts with
subsequent information search to produce the overall valua-
tion that people place on target items. This idea is reinforced
by work that investigates the processes of decision-making
and pricing via eye-tracking (N. J. Ashby et al., 2012) as well
as the many components of bias that are integrated into these
differences such as the length of time of ownership, bargain-
ing advantages, strategic misrepresentation, (Morewedge et
al., 2009)

These developments strongly suggest that a complete
model of pricing ought to incorporate process-level assump-
tions in order to account for differences between buying
and selling prices. In particular, the multitude of evidence
aligns closely with well-established model components used
in perceptual and preferential decision-making (Ratcliff et
al., 2016; Busemeyer et al., 2019), where choice outcomes
are determined by multiple factors including (1) initial bi-
ases or starting points, which is likely influenced by factors
outlined by Morewedge et al. (2009) including reference /
anchor prices (Pachur & Scheibehenne, 2017); (2) an infor-
mation sampling and accumulation of support for different
response options determined by attention, which can incor-
porate attentional and biased sampling elements (N. J. Ashby
et al., 2012; Pachur & Scheibehenne, 2012; E. J. Johnson et
al., 2007), (3) and termination of this process and generation
of response once sufficient support for one of the response
options has been gathered (leading to interactions with re-
sponse times; N. J. Ashby et al., 2012; Kvam, 2019a). The
model we propose here includes each of these elements as
cognitive mechanisms that compose the price generation pro-
cess, integrating a litany of empirical work into a cognitive
theory that embodies these critical assumptions.

It is worth noting that Johnson & Busemeyer 2005 cre-
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ated a precursor of such a model by developing the sequential
value matching model, which suggested that people generate
prices by sequentially searching through different possible
price values, then making a response when they found a price
that they found equivalent to a target item (gamble stimulus).
Critically, this model is motivated by searching for an a point
of indifference, and the threshold mechanism controls how
much evidence is needed to move from one price to another.
Diverging from this perspective, the model we propose here
proposes that support for a particular price, rather than indif-
ference, is the mechanism that triggers generation of a price
response. Like the model of Johnson and Busemeyer (2005),
the proposed model provides a process account of how peo-
ple make choices and assign prices to gambles, predicting the
joint distribution of both price responses and choices. How-
ever, it departs in several ways to provide an improved ac-
count of pricing, outlined in more detail in the discussion.

The proposed model also takes process models of pric-
ing a step further by predicting the joint distribution of both
prices and the response times taken to select them, which has
not been rigorously addressed before. In the following sec-
tions of the paper, we will show that this model precisely ac-
counts for the changes in the empirical distributions of prices
given to a wide range of gambles; differences between buy-
ing, selling, and certainty equivalence price distributions; the
effect of time pressure on these price distributions; the re-
lationship between the distribution of prices given to indi-
vidual gambles and binary choices between gambles; and fi-
nally the distribution of response times associated with se-
lecting prices. Static and deterministic models are unable
to adequately account for any of these empirical distribution
properties, suggesting that the class of models incorporating
process-level mechanisms for price provide qualitatively su-
perior accounts of how these responses are generated.

The article is organized as follows. First we present exper-
imental results investigating how people’s choices and prices
vary across a wide range of gambles. In particular, we fo-
cus on the distributions of prices and how they change ac-
cording to gamble attributes, price type (buying, selling, or
certainty equivalent), and how prices change when decision
makers are subjected to time pressure. Second, we develop
a dynamic and stochastic price accumulation model that can
account for the most important features of the choice, price,
and response time data. Third, we evaluate the quality of the
model accounts of the data and examine exactly where static
utility models, such as prospect theory, fail. Finally, we draw
conclusions from the empirical findings and discuss future
directions.

Methods

The empirical study was designed to evaluate the effects
of time pressure and price type on the prices people assigned
to different gambles. The gambles shown consisted of a pay-

off ($0-20) and a chance of winning (0-100%). A total of
11 Indiana University students each completed five sessions
of the experiment. Each session consisted of 8 blocks of 36
trials, for a total of approximately 288 trials per session and
1440 trials in total. Participants were paid $10 for attending
each session, plus a bonus of $0-20 based on the price and
choice responses they made during the experiment (outlined
below).

Response types. Trials of the experiment were spread
evenly across eight conditions: a full factorial design with
four response conditions and two time pressure conditions.
The four different response conditions were:

1. Buying / willingness to pay, where participants re-
sponded to a gamble with the amount of money they
would pay to play it;

2. Selling / willingness to accept, where participants gave
the amount of money they would accept in order to
give up the chance to play the gamble;

3. Certainty equivalent [CE], where participants re-
sponded with a price that they believed was equal in
value to the gamble (perspective-neutral); and

4. Choice, where participants selected which of a pair of
gambles presented on the screen they would prefer to
play.

Each trial began when the participant clicked inside a fix-
ation circle presented in the middle of the screen (upper left
of Figure 1). On the choice trials, two gambles appeared –
one on either side of the screen. Participants entered their re-
sponse (selected the gamble they preferred to play) by click-
ing the left or the right mouse button to choose the gamble
on the left or right side of the screen, respectively. Response
times were recorded from the time the gambles appeared to
the time the participant clicked one of the mouse buttons. In
the results and modeling, we focus first on more traditional
measures of choice and prices, and consider process mea-
sures like response times and mouse trajectories later.

On the buying, selling, and CE trials – after clicking the
circular fixation – participants instead saw a single gamble
appear in the middle of the screen along with a semicircu-
lar scale like the one shown in Figure 1 (middle / right pan-
els). They gave their price response using this scale. When
their mouse reached the edge of the semicircle, the price in-
dicated by the position of the mouse was shown in paren-
thesis above the gamble (Figure 1, right panel). They con-
firmed this amount and entered their response by clicking on
the scale at the desired price. Again, response times were
recorded from the time the gamble appeared on-screen until
the participant made their response by clicking the mouse.
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Figure 1. Diagram of the price task. Participants were re-
minded before each trial about what type of response they
were giving (buy / sell / rate) and whether there was time
pressure (speed / precision; left panel). They gave their re-
sponse by clicking on a semicircular scale (middle / right
panels).

Time pressure. In addition to the four response type
conditions, we also manipulated time pressure during the
task. This divided trials into two types, speed and precision
trials, which were crossed with the response type manipula-
tion for a total of eight conditions. In the speed conditions,
participants had to respond in less than five seconds for the
pricing conditions (buying / selling / CE) or less than two
seconds for the choice condition. They were shown an error
message after any trial on which they failed to respond within
this time frame. In the precision condition, participants were
asked to respond within ten cents of the desired price in the
judgment conditions and prompted to make their response
carefully in the choice condition.

The directions for the time pressure and response type
conditions were given at the start of each block of trials, and
participants were reminded which condition they were in by
text above and below a fixation circle in the middle of the
screen (Figure 1, left panel) at the start of every trial as well.
Over the course of the study, participants saw 72 different in-
dividual gambles (repeated 3 times each) across pricing tri-
als, and 36 pairs of gambles (repeated 2 times each) in the
choice trials (see Figure 2 for the gambles and pairs). Tri-
als were blocked by condition so that buying/selling/CE and
speed/precision trials were not mixed together.

Mouse position during each trial was also recorded every
50 ms, allowing us to follow the (x,y) position of the mouse
on the screen from trial initiation to final response. Mouse
tracking and other methods for process tracing like arm or
finger movements have recently been used to provide addi-
tional insight into decision processes prior to response (Koop
& Johnson, 2011), including preference based choice (Chen
& Fischbacher, 2016), simple perceptual decisions (Fried-
man et al., 2013; Dotan et al., 2018), intertemporal choice

Figure 2. All priced gambles (black dots) presented in the
pricing conditions of the experiment, represented in terms of
their payoff (horizontal axis) and winning probability (ver-
tical axis). Colored lines connect the pairs of gambles that
were also presented in the binary choice condition.

(Cheng & González-Vallejo, 2017), and recognition mem-
ory (Koop & Criss, 2016). In our case, we can convert the
(x,y) position into polar coordinates (r,φ), which indicate the
distance of the mouse from the center of the screen and the
angle of the mouse relative to the scale. Respectively, these
correspond to how close a person is to the response semi-
circle and what price their mouse position indicates at every
point during the trial. The mouse data can therefore provide
insight into how close a person is to making a response (how
much support for a response they have collected) and what
price they favor over the course of each trial.

Payment / incentives

In order to provide trial type-consistent incentives, pay-
ment was based on the response a participant gave in a ran-
domly selected trial, where each trial was incentivized in a
way that was consistent with the type of response they were
prompted to give. At the end of each session of the exper-
iment, the random trials were selected from all of the tri-
als participants had undergone, weighted by trial type. To
provide an incentive for speed and accuracy conditions, par-
ticipants were awarded a flat $2 bonus if a speed trial was
selected for payment (or $0 if they failed to respond within
the allotted time on a speed trial). Precision trials were
more likely to be selected (60% precision versus 40% speed),
which provided an incentive to be more careful on these tri-
als. Participants were informed on the details of the payment
scheme prior to participating, so they were fully aware of
these incentives for the entirety of the experiment.

For buying trials, participants would start with a $10
bonus (bringing them to $20 total to accommodate any bid
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they wished to make), then would have that amount reduced
by the amount they bid to play a gamble, provided the bid
was high enough. Whether or not a bid was “high enough”
was determined by the price’s relation to those given in a
prior experiment (Kvam & Busemeyer, 2018). If the buy-
ing price was above at least 20% of selling prices given to
the same or similar gambles in the previous experiment (in
the experiment, they received a message indicating that they
“could find a seller” for that gamble) it was accepted and the
participant would forego the amount that they bid in order
to play the gamble. If it was below the selling prices, the
participant’s bid would not be accepted and they would not
get to play the gamble, instead keeping the flat bonus. In this
way, they were incentivized to give low but reasonable prices
as if they were buying a gamble.

For selling trials, participants would be endowed with a
random gamble from the experiment that they had priced.
Whether they kept the gamble or sold it depended on the sell-
ing price they assigned to it. If the selling price was below at
least 20% of the buying prices for the same or similar gam-
bles from the previous experiment, then the selling price was
accepted (participants were told they “could find a buyer” for
that gamble) and the participant would receive a bonus equal
to the selling price they indicated. In this way, they were in-
centivized to give high but reasonable prices as if they were
selling the gamble.

For certainty equivalent trials, participants would receive
the gamble with probability p, where p is the percentile of
certainty equivalent prices for that gamble – derived from
the previous experiment – into which their price fell. Thus, if
their CE price was unusually low, they would be more likely
to receive the gamble and if their CE price was unusually
high, they would be more likely to receive the fixed dollar
amount (sure thing). In this way, participants were incen-
tivized to give prices that thought were approximately equal
to the value of the gamble, as this was the way to maximize
their expected utility from the randomly drawn trial.

If the participant wound up with a gamble at the end of the
experiment, they would then play this gamble out by rolling
1-6 dice and winning or losing based on the combination of
rolls of those dice. The number and criterion number on the
dice rolls was calibrated to the probability of winning the
gamble; for example, if the chance of winning was 17%, they
would win only if they rolled a 1 on a single die.

Results

The results focus on three main areas: (1) the distribu-
tion of prices and reliability of prices across different types
of gambles, (2) the effects of time pressure on prices, (3)
and preference reversals between choices and prices. Within
each of these, we consider differences between types of price
responses, as there are frequently interactions between the
type of price elicited and the timing or distributions of price

responses. Put together, they illustrate the need for a distri-
butional and dynamic model of price, how these distributions
change with time pressure, and how prices produce different
preference orders when compared to binary choice.

Price distributions

The shape of the distributions of prices is perhaps the most
striking element of the results of the experiment. These are
shown for three example gambles in Figure 3. The first thing
to note is the skew of the distributions for low and high prob-
ability gambles: when the probability of winning is low (e.g.,
5%, Figure 3 top panel), responses tend to group near $0 with
a long tail out toward the right, giving a heavy positive skew.
Conversely, when the probability of winning is very high
(e.g., 95%, Figure 3 bottom panel), responses are grouped
near the maximum payoff with a long tail toward lower price
responses, yielding a strong negative skew.

We tested how the skew changed across conditions and
gambles by calculating a nonparametric measure of the skew
of the distributions (which is linearly related to Pearson’s
median skewness coefficient) as Mean−Median

Std.Dev. for each par-
ticipant and condition (Doane & Seward, 2011; Groeneveld
& Meeden, 1984). These participant × condition skew mea-
sures can then be compared as a function of condition and
the gamble win probability using Bayesian linear and sim-
ple difference models. In all models below, we report the
mean effect and 95% highest-density interval (HDI) for the
estimates of these effects. All models were fit using JAGS,
MATLAB, and MATJAGS, and used 4 chains of 5000 sam-
ples each with 500 burn-in samples.

Overall, skewness became more negative as the probabil-
ity of winning the gamble increased in all conditions, includ-
ing the buying (M(b1) = −0.12, 95% HDI = [−.21,−.03]),
selling (M(b1) = −.19, 95% HDI = [−.28,−.11]), and CE
conditions (M(b1) = −0.19 95% HDI = [−.28,−.10]). As
illustrated in Figure 3, this was true for almost every individ-
ual participant (bottom panels) as well as the aggregate (top),
indicating that this type of effect is not driven by a select few
individuals nor an effect of averaging.

These types of distributions might be expected if out-
comes were simulated from a binomial distribution with
probability equal to the gamble outcome probability – the
unlikely outcomes ($0 in the high-probability gamble, $18
in the low-probability gamble) would be sampled less fre-
quently, leading to a skewed distribution of samples. This
lends support to the idea that decision makers mentally simu-
late payoffs when considering the value of a particular gam-
ble, as the distributions of prices seem to mimic the distri-
butions we might expect from this kind of mental simula-
tion. Note that these skewed distributions will remain even
with large numbers of samples – even with sample sizes near
1000, win probabilities near 1-5% will still yield substan-
tively skewed distributions of samples, and thus price re-
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Figure 3. Distributions of buying (blue), selling (red), and certainty equivalent (orange) prices for three example gambles in
the data set. In the top plots, solid curves correspond to smoothed aggregate density of responses, dotted / colored vertical lines
correspond to the mean of each distribution (same color), and dots on each distribution correspond to the median of each set
of responses. The vertical black line indicates the maximum payoff for each gamble. In the bottom plots, individual vertical
colored lines indicate responses on separate trials (again color coded such that blue = buying, red = selling, and orange = CE),
and black violin plots illustrate the smoothed overall density of these responses for each person and gamble.

sponses. It therefore does not imply undersampling of rare
events like that implicated in decisions from experience (Her-
twig & Erev, 2009).

The skew of prices also relates to differences between
buying and selling prices. There is a consistent mean sep-
aration between buying and selling prices, which is a well-
established asymmetry (Birnbaum & Stegner, 1979; Carmon
& Ariely, 2000; Kahneman et al., 1990; Yechiam et al., 2017)
thought to be driven by additional value conferred by owner-
ship or endowment (Morewedge et al., 2009; Thaler, 1980).
The results of this experiment suggest that the mean differ-
ences between buying and selling prices seem to be driven by
differences in skew (mean minus median direction) between
the two types of prices: buying prices are more positively
skewed compared to selling prices (M(SBuy−Sell) = 0.03,
95% HDI = [0.00,0.06]). These differences are illustrated

in the panels of Figure 3 , where buying and selling prices
are positively skewed for low probability wins (top panel);
negatively skewed for high probability wins (bottom panel);
and selling prices are slightly negatively skewed and buying
prices are slightly positively skewed for probabilities near .5
(middle panel).

The difference in skew between types of price may be at-
tributable to a difference in the starting point of each price
type. Naturally, buyers will want to start with a low price
anchor and then increase the price as they consider the possi-
bility of winning high payoffs. Conversely, sellers will want
to start high and may come down as they consider the pos-
sibility of undesirable low payoffs. This difference in strate-
gic preference distortion is advantageous to each group, and
differences in response bias appear to be the most plausible
mechanism for the buyer-seller gap (Pachur & Scheibehenne,
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2017). The process of initial anchoring and subsequent ad-
justment would create a long tail to the left in selling distri-
butions (as fewer and fewer sellers are willing to come down
in price) and a long tail to the right in buying distributions (as
fewer buyers are willing to come up on price). As we show
in the section on price dynamics, this may also be related
to dynamic properties of these prices that are revealed when
decision makers are put under time pressure.

Variance and reliability. The final aspect to note about
the distributions of prices is that the high-variance gambles
(chance of winning around 50%) resulted in a much wider
spread of responses than the low-variance (chance of win-
ning near 0% or 100% gambles. This is illustrated well
in Figure 3, where the high-variance gamble in the middle
panel results in greater spread in price responses than the
low-variance gambles in the top and bottom panels. It seems
that a decision-maker’s uncertainty about what outcome they
might receive – given by the outcome probabilities of the
gamble – was translated into greater uncertainty in the distri-
butions of their price responses.

The variance in responses to gambles with high uncer-
tainty is also manifested in the reliability of responses to
these gambles. Because each participant saw each gamble
a total of five times in each condition, we were able to assess
the test-retest reliability of each gamble by examining the
correlations between two subsequent responses to the same
gamble and condition for each person. Pairs of measure-
ments used in the test-retest correlation were taken from only
the nearest successive measurements (e.g., the first and sec-
ond time a gamble was presented, and the third and fourth
time it was presented), which were typically within 2-3 days
of one another. Overall there were approximately 200-240
(10 participants × 6 conditions × 4 repeats, minus dropped
trials) test-retest values for each gamble, yielding a fairly pre-
cise picture of the reliability of each item.

The results are shown in the top panel of Figure 4. Relia-
bility in general was poor, with most gambles producing test-
retest correlations of around 0.1 to 0.6. Furthermore, relia-
bility was consistently lowest for gambles with a probability
of winning close to 50%. Gambles with very low and very
high probabilities had reliability as high as 0.8, but those with
greater variance (probabilities close to 50%) rarely exceeded
test-retest reliability of 0.4.

Greater variance and lower reliability in responses to high-
variance gambles is again characteristic of a stochastic re-
sponse process where outcome uncertainty influences the
spread of responses. As with the highly skewed gamble
prices, this kind of result would be typical of a binomial dis-
tribution of simulated gamble outcomes. If decision makers
made their responses on the basis of a relatively small set of
mentally simulated outcomes of the gambles, we could ex-
pect both highly skewed responses to low-variance gambles
and widely distributed responses to high-variance gambles.
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Figure 4. The relationship between chance of winning a
gamble and the reliability of responses to that gamble (top),
and the payoff of a gamble and the standard deviation of
price responses to that gamble (bottom). Each individual dot
corresponds to a single gamble, gray lines indicate best fit
quadratic (top) or linear (bottom) function relating the vari-
ables.

A final note regarding the distributions of price responses
is helpful mainly because it helps in building a model of
the pricing process later. The bottom panel of Figure 4
shows the relation between the maximum payoff of a gam-
ble and the variance of the distributions of responses to that
gamble. Even though the maximum payoff of each gam-
ble was slightly negatively related to probability (see Figure
2), higher payoffs were associated with greater variance in
responses. The association between maximum payoff and
standard deviation of responses was both strong and positive
(Mb0 = 0.16, 95% HDI = [0.15,0.18] in a Bayesian regres-
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sion), indicating that people gave more variable responses
as the magnitude of the potential payoffs increased. Gener-
ally speaking, the variance in expected payoffs of a gamble
increased with the winning payoff magnitude, which results
in greater variance of prices for the gamble – the standard
deviation of the expected gamble payoffs turns out to equal
to

p · (1− p) ·X (1)

where p is the probability of winning, and X is the amount to
win.

The skew of responses to low-variance gambles, the dif-
ference in skew between selling relative to buying prices,
and the high variance and unreliability of responses to high-
variance gambles all serve as indicators that there are ele-
ments missing from the deterministic valuation models that
currently dominate the literature on judgment and deci-
sion making. The model we propose below incorporates a
stochastic element to the pricing process that is influenced
by the outcome probabilities of the gamble, allowing it to
account for each of these phenomena in price distributions.

Price dynamics

Another characteristic of valuation models typically used
in judgment and decision making is that they do not provide
any mechanism to predict differences in price as a function
of how much time a decision maker takes to consider their
selection. Because there is a fixed function mapping the out-
comes and associated probabilities to a value, they would
predict that there should be no interaction between the time
taken to give a price response and the mean price response.
This assumption was tested through the time pressure manip-
ulation in the experiment which showed that price responses
changed systematically over time.

Time Pressure. In order to evaluate the effects of time
pressure on different types of price responses, we used a hier-
archical Bayesian model to estimate the differences between
conditions within and across participants. Here we report
the overall differences between conditions, comparing each
combination of subject and gamble between conditions using
paired comparisons (e.g., we compared participant X’s re-
sponses to gamble Y in the buying / speed condition against
participant X’s responses to gamble Y in the buying / preci-
sion condition). As before, the models were run using MAT-
LAB and JAGS (Plummer, 2003). Code for the model can be
found at osf.io/tfm4e/.

The mean pattern of prices is shown in Figure 5. In line
with typical endowment effects, we found a substantial mean
gap between buying and selling prices (Msell −Mbuy = $0.85,
95% HDI = [0.74,0.97]. However, when these prices were
given under time pressure the mean difference between buy-
ing and selling was approximately a dollar (Msell,speed −
Mbuy,speed = $1.00, 95% HDI = [0.42,1.60]). but fell to
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Figure 5. Mean prices for each response type (buying / sell-
ing / CE) and time pressure condition. Vertical error bars
indicate ±1 unit of standard error on the mean prices, hori-
zontal error bars (which are all quite small) indiciate ±1 unit
of standard error on the mean response times.

34 cents when precision was emphasized rather than speed
(Msell,prec − Mbuy,prec = $0.34, 95% HDI = [−0.36,1.04]).
The reduced difference between conditions can be attributed
to a tendency of selling prices to decrease in precision condi-
tions relative to speed conditions (Msell,prec−Msell,speed =
−$0.25, 95% HDI = [−0.09,−0.43]) and buying prices to in-
crease when time pressure is relaxed (Mbuy,prec−Mbuy,speed =
0.31, 95% HDI = [0.19,0.42]]). As a result, these prices
tended to converge when participants were encouraged to
consider the gambles more carefully before entering their
prices. Note that the size of these increases / decreases will
not perfectly match Figure 5 as they are comparing the mean
differences within participant / gamble across relevant condi-
tions rather than the difference of means across all responses
and participants in a condition.

Oddly, this is at odds with the findings of N. J. Ashby et
al. (2012), who found that buyer-seller differences increased
with deliberation time. We revisit this point in the discussion,
as it implicates that the model may need both starting point
(anchoring & adjustment) as well as sampling process (atten-
tional components) pieces in order to account for buy-seller
differences across different types of pricing situations.

Process tracing. The dynamic nature of price is corrob-
orated by patterns in mouse tracking data, which allows us
to explore a potential source of information about the pricing
process prior to when a selection was made (Freeman et al.,
2011; Schulte-Mecklenbeck et al., 2011). As we suggested in
the methods section, the position of the mouse on the screen
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was sampled at 20 Hz (every 50 ms). The average trajectory
of the mouse for each price type is shown in the top panel of
Figure 6. Quite clearly, prices for the selling condition tend
toward higher prices than those for the buying condition, and
CE condition tends to land somewhere in between. How-
ever, this only shows the spatial trajectory of these ratings
rather than how mouse position changes over time. To exam-
ine the temporal properties of price exhibited in the mouse
position, we must examine how the mouse position changes
across time points.

Figure 6. Average trajectory of the mouse on the screen (top
panel), and broken down by radial position relative to the
average trajectory (bottom panel) for each price type. The
filled regions in the bottom panel indicate ±1 unit of standard
error relative to the average trajectory for the corresponding
condition.

The task used a radial scale (Figure 1), which meant that
the x and y positions of the mouse could be transformed into
polar coordinates r =

√
x2 + y2 and φ = tan−1(y/x) for con-

venient metrics. The coordinate r describes the distance of
the mouse from its starting point in the middle of the screen,
and the coordinate φ describes the angle of the mouse rela-
tive to direction [1,0], which is where the response for $20
is located on the screen. This makes the φ coordinate par-
ticularly useful, because it is most likely to track the current
‘favorite’ price across the course of each trial. For example,

a φ coordinate of 0 corresponds to a favored price of $20,
a φ coordinate of π/2 radians (90 degrees) corresponds to a
favored price of $10, and a φ coordinate of π radians (180
degrees) corresponds to a favored price of $0. While these
prices may not manifest across the entire course of a trial,
a participant must approach the appropriate φ angle of their
desired response before entering it, simply because that is
how the response is entered.

With this in mind, we can roughly track the favored price
across the course of a trial as indicated by the mouse posi-
tion on the screen. The bottom panel of Figure 6 shows the
φ coordinate in terms of the price it indicates on the scale.
The overall mean trajectory is removed so that we can see
how buying, selling, and CE trajectories behave relative to
one another. As the graph indicates, the favored price in-
ferred from the mouse trajectory increases for selling prices
and decreases for buying prices relative to the average for the
first 2-3 seconds of the trial, then slowly come back together
over time. This pattern suggests that early biases brought on
by the price type manipulation tend to wash out over time
as participants consider more information about the gamble.
It therefore lines up well with the results shown in Figure 5,
which also shows a convergence between price types in the
conditions with later responses (precision emphasis).

The mouse tracking data alone does not guarantee that a
person’s true underlying preference state is evolving accord-
ing to the sort of dynamics shown in Figure 6, but put to-
gether with the mean patterns shown in Figure 5 it provides
strong evidence that the price type manipulation differen-
tially impacts the dynamics of the pricing process. In par-
ticular, both sources of data suggest that buying and selling
prices start with a large difference between them and that this
gap diminishes over time as a person samples more informa-
tion about the gamble shown on the screen. As we show in
the model, this can be accounted for by treating the price type
condition as a manipulation of initial bias and the price ac-
cumulation process as one which washes out this initial bias
over time.

Preference reversals

Another critical phenomena that hints at richer underly-
ing response processes is that of preference reversals. In
some cases, participants will choose gamble A over gamble
B when they are side by side in a binary decision, but will
price gamble B as higher in value than gamble A when they
see them on separate pricing trials (Lichtenstein & Slovic,
1971; Slovic & Lichtenstein, 1983; Grether & Plott, 1979).
Typically, past research has found that the higher-probability
gamble of the pair (p-bet) is chosen in a binary choice but the
higher-payoff gamble (d-bet) is assigned a higher price when
pricing the single gambles (Slovic & Lichtenstein, 1983).

A similar finding was strongly supported in our data,
shown in Figure 7. For each gamble, we took the mean price
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Figure 7. Proportion of participants favoring the safe (high-probability / p-bet) gamble across all conditions and gambles (top
panel) and for six example gambles (smaller bottom panels). Preference between gambles is inferred from choice proportions
(gray), mean buying prices (blue), selling prices (red), or certainty equivalents (orange) for each participant and then computed
on aggregate. Error bars indicate ±1 unit of standard error.

1 assigned to a gamble by a participant in a particular condi-
tion and then compared the proportion of times the mean (or
median) price was higher for the p-bet versus the d-bet. As
shown, the overwhelming majority of gamble pairs presented
in the experiment resulted in participants choosing the p-bet
more often in the choice condition when the gambles were
presented side by side. However, these same participants
tended to assign a higher price to the d-bet when the same
gambles were presented on separate pricing trials. Out of the
30 unique, non-dominated gamble pairs presented during the
experiment, 22 of them showed preference reversals between
choice and pricing. This was true for buying, selling, and
certainty equivalent prices – typically all three would show
a reversal relative to binary choice, although buying prices
tended to be most similar to the pattern obtained from the
choice condition.

There was also a slight trend for precision conditions to
result in prices that favored the d-bet over the p-bet more of-
ten than speed conditions (top panel of Figure 7) , but these
differences did not credibly rule out zero so we did not read
too far into these differences.

Although they were much more rare than preference re-
versals between choice and price, there were occasional re-
versals between buying and selling conditions. An example
of this pattern is shown in the bottom right panel of Figure 7,
where participants priced the p-bet ($7.75, 75%) higher than
the d-bet ($12.75, 45%) more than half the time in the buying
condition, but consistently priced the d-bet higher than the p-
bet in the selling condition. This type of preference rever-
sal is substantially rarer than reversals between pricing and
choice conditions: a switch across 50% occurred on 4 out
of 30 unique gambles, and substantial differences between
buying and selling prices that did not cross 50% occurred
on an additional 2 gamble pairs. These types of reversals
have been found before (Mellers et al., 1992; Birnbaum &
Beeghley, 1997; Birnbaum & Zimmermann, 1998), but they
are even more difficult to explain than those found between
pricing and binary choice. In this experiment, most reversals
between buying and selling seem to be related to the differ-
ences in skew between the two price types, shown in Figure

1Analyzing the median prices versus the mean makes essentially
no difference in the results or interpretation.
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3. The model we present in the next section is able to handle
buying-selling reversals by virtue of its ability to produce the
different skews for each type of price, but since these were
rare we do not focus on them.

Response times

Each type of response – including buying, selling, CE,
and choice – exhibited the typical right-skewed distribution
of response times. Each of these can be clearly seen in Figure
8. Naturally, mean response times were faster in the speed
condition than in the accuracy condition, and the accuracy
condition tended to exhibit a longer tail to the RT distribu-
tion. Furthermore, responses in the pricing conditions (buy-
ing, selling, CE) were substantially slower than those in the
choice condition. Despite there being more information to
consider in the choice condition – twice as many outcomes
and probabilities – the response processes underlying pricing
appear to take longer than those underlying binary choice.
As we suggest in the modeling section, this may be because
participants can decide based on pairwise differences in at-
tributes between alternatives in the binary choice condition,
but to come up with a price they instead weight the possi-
bilities of winning and losing the gamble over time as they
mentally simulate outcomes.

The differences in distributions of response times between
price conditions were fairly small, as reflected by the x-
position of the conditions in Figure 5, but were quite sub-
stantial between speed and accuracy conditions. This seems
to indicate that they likely shared many properties in terms
of the underlying response processes. In fact, a model with
only two response thresholds – one for speed and one for
accuracy – provided reasonable fits to the data. The model
predictions aggregated across participants are overlaid onto
the RT distributions shown in Figure 8, while the model pre-
dictions for each individual are presented in supplementary
figures at osf.io/tfm4e/. In the next section, we discuss how
these predictions were generated.

While the response time distributions are not especially
unusual as far as decision tasks are concerned, they do con-
stitute another major barrier for the static, deterministic mod-
els like expected utility and prospect theory. Because these
theories do not provide a generative model that explains the
process of how a decision maker comes up with a price –
instead describing the outcome of the process as if the de-
cision maker is weighing utilities and probabilities (Berg &
Gigerenzer, 2010) – they are unable to provide sufficient de-
scriptions of process-level measures such as response times
or the mouse tracking data shown in Figure 6. The model
we describe next provides a set of cognitive mechanisms for
how these prices are generated, and is thus able to produce
response times that match the real data.

Figure 8. Distributions of response times across all eight
conditions (histograms) and price accumulation / decision
field theory model fits to response times for price conditions
(solid lines).

Modeling

We have highlighted a number of areas where utility and
prospect theory models are insufficient to capture important
aspects of the empirical data. Notably, they fail to predict 1)
skewed distributions of prices that differ for price type and
probability of winning a gamble (Figure 3); 2) the greater
variance and unreliability of prices assigned to gambles with
a probability of winning near 0.5 (Figure 4 ); 3) the effect of
time pressure on the gap between buying and selling prices
(Figure 5; 4) the convergence between different types of
prices over time (Figure 6); 5) preference reversals between
choice and price, and buying and selling (Figure 7); or even
6) the simple response time distributions (Figure 8).

It is critical to note that these effects are individual-level
ones, not simply the result of performing analyses on aggre-
gate data, which can show patterns that are not present in any
particular individual (F. G. Ashby et al., 1994; Regenwet-
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ter & Robinson, 2017). Each of these effects was observed
in the majority of individual participants, which is shown in
the online materials at osf.io/tfm4e/. In all of the modeling
analyses presented below, we also fit individual-level data to
avoid the issues associated with drawing conclusions from
fits to averaged data (Estes & Maddox, 2005), although for
illustrative purposes the figures aggregate data and fits across
individuals.

Given the strength of the distribution-level and
temporally-dependent effects in the empirical data, a viable
model of pricing should be both dynamic and stochastic. To
develop such a model, we examine a variant of continuous-
response cognitive models that predict joint distributions of
responses and response times. In addition, it is imperative
to compare the proposed dynamic and stochastic model to
random utility extensions of the deterministic models with
respect to their ability to account for the distribution of
choices and prices (ignoring response times).

Prospect theory and random utility

Thus far, we have largely dismissed prospect theory as
being capable of generating the observed distributions of
prices because it is inherently a deterministic theory of price.
However, variability can be introduced to the model through
several avenues. The two most reasonable sources of error
would be random variation in the utility each participant as-
signs to dollar values – referred to as random utility models
– or random error associated with the final value representa-
tion or motor response. While motor variability undoubtedly
plays a part in the response processes, it offers little to no
benefit in terms of capturing the skew of price distributions.
The typical functional form of these error functions (normal,
with mean 0 and variance σ2) would produce a symmetric
distribution of prices centered on whatever the “true” value
of the gamble derived from prospect theory or expected util-
ity. Clearly, this is insufficient to predict the probability-
dependent and type-dependent distributions of prices like
those shown in Figure 3.

The other reasonable possibility is to introduce cross-
participant or cross-trial variability in the prospect the-
ory parameters: utility power parameter α and probability
weighting parameter γ. While we could also consider two-
parameter probability weighting functions, this makes little
differences in the results. It is not immediately clear how
variability in these parameters should affect distributions of
responses or what shape the resulting distributions would be.
The most common approach would be to allow them to vary
randomly according to a normal distribution. However, this
is only able to create right-skewed distributions of prices, as
shown in Figure 9.

Since normally distributed parameter variability seems to
fail here, we tested an even more flexible implementation of
prospect theory where parameters are permitted to vary ac-
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Figure 9. Predicted distributions of WTA (selling) and
WTP (buying) prices generated by varying the parameters
of prospect theory across trials according to a normal distri-
bution.

cording to a beta distribution. In this model, the utility pa-
rameter and probability weighting parameter were allowed to
vary from trial to trial as

α ∼ Beta(Aα,Bα) (2)

γ ∼ Beta(Aγ,Bγ) (3)

Furthermore, we allow these parameters to vary across
price type conditions – going a step further than the tra-
ditional assumption of loss aversion / endowment affecting
only the utilities and permitting price type manipulations to
affect both utilities and probability weights.

We included two additional parameters in the prospect
theory model in an effort to allow it the best chance at fit-
ting price distributions. The first of these was a motor er-
ror parameter σerr, which allowed responses generated based
on the utility and probability weighting parameters (drawn
on a particular trial) to additionally vary according to a nor-
mal distribution around the selected price, resp ∼ N(0,σerr).
This accounted for motor processes and their effect on prices,
and allowed us to separate random variation in task-relevant
parameters from random variation in task-irrelevant ones
(motor variation).

The second additional parameter was one that the prospect
theory model shared with the price accumulation model,
which was driven by a subset of responses that were made
at the maximum payoff in conditions where this was not sen-
sible. Several of the participants – particularly, participants
1, 2, and 9 – had a tendency to respond at the maximum pay-
off for a subset of the trials, even when the gambles featured
on those trials had a very low probability of winning. This
can be seen in Figure 3, where there is a small bump at the
maximum payoffs in the first two panels (at $18 in the top
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panel, and $15 in the middle panel). These outliers create
substantial problems for the model, because they should be
extremely unlikely in low- to medium-probability gambles.
However, it is difficult to justify a specific rule that would
be able to systematically exclude these trials, and it is en-
tirely likely that there were some high-probability trials that
contained these outliers as well. Instead, we included a con-
taminant process that hypothesized that participants would
respond at the maximum payoff with probability pmax, and
follow the prospect theory (or price accumulation model)
prediction with probability 1− pmax. This generates a prob-
abilistic mixture of the ‘normal’ response process and the
contaminant process, allowing the model to capture these ab-
normal high price responses without sacrificing the overall
quality of fits to the price data.

In total, this leaves the prospect theory model with 14
free parameters: 6 utility parameters (Aα and Bα for each
of the three pricing conditions), 6 probability weighting pa-
rameters, σerr, and pmax. This results in an extremely flex-
ible model that is intended to giver prospect theory the best
chance at accounting for the distributions of prices generated
across conditions.

Price accumulation model

In response to the issues that have been identified in static
and deterministic models of decision making, cognitive mod-
els incorporating process-level mechanisms have been ap-
plied to explain how preferences are formed. Many of these
models take the view that preference is constructed as evalua-
tions are accumulated over time, usually as a person samples
the attributes of competing choice options (Busemeyer et al.,
2019)

These models quantify the support for a particular choice
option in terms of accumulators or a relative balance of sup-
port that describe how their (relative) preference for items
change over time. These models provide excellent accounts
of responses and response time distributions in both inferen-
tial and preferential choice (Ratcliff et al., 2016; Busemeyer
et al., 2019). What is different in the present situation is
that we are interested not only in discrete choice but also in
continuous prices. This prevents the previous choice models
from being directly applied, as they mainly predict choices
between 2-3 options (or what relative preference judgments
between two options should be; see Bhatia & Pleskac, 2019).
This leaves the substantial task of model development for
pricing scenarios like the experiment presented above, where
participants can make any response between $0 and $20.

Here we apply an accumulation framework based in part
on these preference accumulation models, which views pric-
ing as a selection among a large number of possible re-
sponses (dollar / cent values). Recent developments in com-
putational models of cognition have expanded theories of de-
cision making to cases where responses can fall anywhere

along a continuous range of potential responses (Kvam,
2019b; Smith, 2016; Ratcliff, 2018). Although most of the
applications have been to perceptual decisions like orienta-
tion and color selection, Kvam (2019a) sets out a more gen-
eral modeling framework that can be applied to preferential
choices between different responses as well, such as selec-
tions along a range of prices. In this framework, each alterna-
tive is represented as a direction in a multidimensional space,
where the angles between alternatives in the set correspond to
similarity relations between them (as in latent semantic and
cosine similarity models Bhatia, 2017; Furnas et al., 1988;
Landauer & Dumais, 1997; Pothos et al., 2013). In the case
of prices, this naturally forms a continuum of directions de-
scribing different possible price responses, where prices that
are similar to one another (e.g., $18 and $19) are set closer
together than those that are very different (e.g., $18 and $1).

Because the set of price responses composes a very simple
continuum of values, they can be arranged in two dimensions
as shown in Figure 10. For example, we might set a response
of $0 at 0 degrees, $10 at 45 degrees, and $20 at 90 degrees.2

However, such a scale presupposes that the similarity of $0
to $10 is the same as the similarity of $10 to $20. It is well-
known via studies of numerosity and number representation
that human decision makers are less able to discriminate be-
tween large numbers / values relative to small ones (Feigen-
son et al., 2004; Longo & Lourenco, 2007), yielding a re-
lationship between actual and perceived value that approxi-
mates a power function (Krueger, 1982). Consistent with this
scaling, many applications of utility theory rely on a power
function to represent utility of monetary values (e.g., Kah-
neman & Tversky, 1979). Naturally, we want to incorporate
this diminishing sensitivity to increasing dollar values as a
fundamental component of our model.

The most straightforward way to incorporate diminish-
ing marginal sensitivity to dollar values is to build a power
function into the representation of alternatives. Rather than
spacing the set of alternatives uniformly across [0,π/2],
we should have larger values grouped closer together than
smaller values to represent their greater representational sim-
ilarity (more similar utilities). To perform this transforma-
tion, we take the initial position of a particular alternative,
compute its utility according to the power function, and di-
vide by the utility of the maximum value on the scale ($20)
to obtain its position along the scale as a proportion of the
maximum. Then we multiply that value by π/2 (in radians,
or 90 degrees) to obtain the angle of the alternative relative to
[1,0]. Thus, the angle φ assigned to a dollar value x is given
as

2There is nothing that necessarily requires the maximum and
minimum values to be represented orthogonally, but doing so re-
sults in natural high and low anchors that are mutually exclusive
and do not provide support for one another, as the cosine between
the max and min will be zero.
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Of course, the use of $20 as the upper anchor / maximum
value is driven by the experiment design, but we can easily
substitute other values in for xmax as the design or set of gam-
bles demands.

This results in a revised scale like the one shown at the
bottom right of Figure 10. This transformation re-mapping
the alternatives can be flexibly re-computed for different val-
ues of α, allowing it to be calculated easily as α varies across
individuals or as α is estimated in the model. This trans-
formation actually creates the effect of payoff magnitude on
response variability observed in the bottom panel of Figure
4: because higher prices are grouped closer together in rep-
resentation space, the same variability in cognitive state will
lead to greater variability in responses that are higher on the
scale relative to responses that are lower on the scale. Thus,
we should observe greater variability in price responses when
the expected utility of an option is higher.

Once the different price responses are represented as di-
rections (vectors), a person’s support for different prices can
then be represented as a point in this 2-dimensional space.
The component of their state along a vector corresponding
to an alternative describes the support for that price at any
given point in time. Therefore, as the preference state moves
through the 2-dimensional space in which prices are rep-
resented, so too does the support for the various price re-
sponses. Once sufficient support for a particular price re-
sponse is generated (the component of the state along one of
the price vectors exceeds a threshold θ), that price is selected
and entered. This forms a (quarter-)circular response bound-
ary, where a person continues to consider information about
the item in front of them until their preference state crosses
the edge of the circle, at which point the angle of the state
relative to the origin determines the response.

Formally, the model specifies a starting point for each
trial, specified by two free parameters. The first parameter
depends on the buying, selling, or CE condition. It is spec-
ified by sβ, which determines the initial bias in price before
the gamble probabilities are considered. The initial price that
a person favors is given as sβ · π/2 (from Equation 4), and
serves as a proportion of the maximum gamble payoff that
a participant is initially willing to consider. It sets the angle
of the starting point for the price accumulation process, such
that larger values of sβ result in an initial bias toward to give
greater price values and smaller values of sβ result in an ini-
tial bias to give smaller price responses. This parameter nat-
urally varies according to the type of price a decision maker
is asked to give as a fraction of the maximum payoff – for
example, a decision maker may have a high value of sβ = .9
for selling prices or a low value of sβ = .2 for buying prices.
This setting of the start point is motivated by the finding that

response bias seems to be an important component of the en-
dowment effect or buyer-seller gap (Pachur & Scheibehenne,
2017).

The second start point parameter specifies the strength of
this initial belief as a uniform distribution Uni f (0,sv), as is
typical of evidence accumulation models of choice (Ratcliff,
1978; Brown & Heathcote, 2008). A higher sv will on aver-
age result in more stubborn initial biases, making a decision
maker stick with prices near their initial point even as they
consider attributes of the gamble that conflict with this price.
A lower sv will allow a decision maker to be more strongly
influenced by the objective properties of the gamble, allow-
ing support for different prices to vary more flexibly as the
decision maker considers different values they could assign.
Each parameter has a straightforward interpretation in terms
of polar coordinate: sβ determines the angle of an initial price
bias relative to the origin (degree of bias), while sv deter-
mines the radius of the starting point (strength of the bias).
Participants will naturally vary in both the prices they are
willing to pay / accept before considering the gamble as well
as the strength of their convictions about these prices, so both
starting point parameters are set as individual differences and
fit as a free parameter for each person. Additionally, the start-
ing point bias sβ is allowed to differ between buying, selling,
and CE conditions as sbuy, ssell , and sCE .

Over time, the initial price a person is willing to give will
be adjusted as they consider the payoffs and the probabilities
of the gamble. The model suggests that a person sequen-
tially updates their initial valuation by mentally simulating
the potential outcomes of the gamble. As they think about
receiving an outcome, their representation of the value of the
gamble moves toward that outcome. For example, say a per-
son is considering a gamble with a 50% chance of winning
$15. Half the time 3 they think about winning $15, and half
the time they think about winning $0. When they think about
winning $15, their state moves in direction v15 (perhaps at 70
degrees, for example, depending on the utility representation
yielded by α and Equation 4) toward high prices, or for gam-
ble outcomes where the high payoff is lower, they will step at
an angle determined by the location of that payoff given by
Equation 4. When they think about receiving $0, their state
moves directly rightward toward the lower prices, stepping
in direction v0 = [1,0]. This model can be thought of as a
dynamic variant of anchoring and adjustment models (Gold-
stein & Einhorn, 1987) – the initial price, impacted by the
maximum payoff and the price type, is adjusted according to
the potential outcomes of the gamble and their likelihoods as
a person mentally simulates the gamble outcomes.

3For simplicity, we assume no probability weighting in the men-
tal simulation, as this does not appear necessary for high-quality
model fits. Of course, it is possible that probability weights may
become important or useful in building future models of pricing so
we leave the possibility open.
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Figure 10. Diagram of the price accumulation model and the meaning of each parameter (top), showing accumulation of
support for different prices that could be assigned to the gamble ($15, 55%). Differences between buying and selling (and CE)
prices are influenced primarily by the start price bias sβ (bottom left), while difference between speed and precision conditions
are influenced mainly by the threshold θ (bottom middle). Individuals also vary in their utility parameter α, which determines
how similar the representations of low prices versus high prices are to one another (bottom right).

The model would be easily extended to situations with
multiple gamble outcomes. In these cases where there are
probabilities p1, p2, p3, ... of receiving outcomes x1,x2,x3, ...,
the probability of stepping toward a price xi would be given
by the corresponding pi. At each step, a multinomial ran-
dom variable would be drawn (parameter n= 1) to determine
which outcome of the gamble is sampled and thus which di-
rection the accumulation process should step.

This sequential updating process leads the state to carve
a trajectory through the price representation space, as shown
in Figure 10. This arrangement allows simulated outcomes
to generate support for multiple prices that are consistent
with that payoff – for example thinking about winning $15
might simultaneously generate support for several high-price
responses like $13.50, $16, or the other surrounding values
as it steps toward v15. The time between these steps or the
step size can be fixed at an arbitrary value in order to set the
scale of the model – in our experiments, we fix the step size at
0.03 and average step time at 30 ms to provide a sufficiently
fine-grained approximation for the random walk without di-
minishing computational efficiency to where the model took
too much time to simulate.

Once support for any of the prices exceeds θ, the decision-

maker responds with the corresponding price. The criti-
cal value corresponds to the amount of consideration the
decision-maker puts into the incoming information before
making a decision. As a result, θ impacts the amount of time
it takes a person to give their prices: lower θ means they
will consider the gamble attributes less, generating faster
responses and giving the initial bias more sway over final
prices. Higher θ means that a person will give more con-
sideration to the gamble attributes, resulting in them taking
more time to make their response and ultimately reducing
the impact of their initial biases. Given its parallel role in
judgment and binary decision tasks, we should expect the
threshold to be higher in a precision-emphasis condition than
in a speed-emphasis one. In the model, we therefore allow
for two separate thresholds for each individual: one for the
speed condition (θspeed) and one for the precision condition
(θprec).

The model uses one more parameter to describe the distri-
butions of prices. This is the same mixture parameter pmax,
described above in the section on prospect theory. The value
of pmax specifies the likelihood that a participant responds
with the maximum payoff for a gamble rather than going
through the mental simulation and accumulation process. At
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this point, the price accumulation model possesses all of the
parameters (6) necessary to predict distributions of prices.
The parameters relevant mainly to predicting response times
and dynamic properties of the model – described next – are
fixed for the comparison with prospect theory.

So far, all of the parameters have described the decision
processes that go into pricing, but there will naturally be
some time devoted to looking at the gamble and selecting the
price once the decision maker has arrived at a dollar value
for their response. This is quantified by the final parame-
ter describing non-decision time ndt, which quantifies the
average amount of time participants take on each trial for
response processes unrelated to the decision component. It
is fit as a free parameter for each person and not permitted
to vary across conditions or gambles. Although it is possible
that there are variations in non-decision time across trials and
conditions as a function of time pressure or motor prepara-
tion time (MacKenzie & Buxton, 1992; Crossman & Good-
eve, 1983; Donkin et al., 2009), these can be expected to be
relatively small compared to the scale of the RTs (usually
1-10 seconds) observed in the data (Figure 8).

Formally, the response is given by the angle at which the
response hits the boundary and the response time is given as
a random variable RT that is based on the number / length of
steps it took to reach the threshold. To preserve the Markov
property of the random walk, we assumed the time for each
step was exponentially distributed, so that the expected time
to the next step was unrelated to the time since the last step.
The distribution of each tstep was exponential with rate pa-
rameter λ = 30 milliseconds (fixed rather than estimated, in
order to set the scale of the random walk). Put together,
the amount of time it takes a process to reach the threshold
is given by adding up a number of these tstep equal to the
number of steps it took to finish nstep (recall that the process
moved 0.03 units each step). As the sum of several exponen-
tial random variables, the response time for a particular trial
is therefore equivalent to a gamma random variable where
RT ∼ Gamma(nstep, tstep).

In total, this leaves us with 9 free parameters to predict the
joint distributions of prices and response times across 432
combinations of gamble and price condition (72 gambles ×
2 time pressure × 3 price types) for each participant in the
experiment.

Model comparison and fit

The first item of business is to compare prospect the-
ory and the price accumulation model. However, because
prospect theory does not predict response times, we must
use a two-step procedure to estimate the price accumulation
model: a first step to apply the model to prices alone (to allow
the comparison with prospect theory), and a second step to
apply it also to response times. The first step of applying the
model to the distributions of prices was done by ignoring ndt

and fixing θspeed and θprec to 2 and 4, respectively. The six
remaining parameters – utility power / representatation pa-
rameter α, start points for each of the three conditions sbuy,
ssell , and sCE , contaminant pmax, and the start point variabil-
ity sv – were estimated freely from the data for each partici-
pant.

This two-step procedure also allows us to compare perfor-
mance of the price accumulation model on just the price dis-
tributions against models that cannot predict response times
(which are arguably incomplete for this reason). We use
this to compare the price accumulation predictions against
those of a prospect theory model that includes a specialized
between-trial parameter variability mechanism to attempt to
produce the skew of price distributions.

Comparison

The prospect theory model contained 14 free parameters,
including 12 parameters for the beta distributions of utility
and probability weighting functions across conditions (3 in-
stances of Aα, Bα, Aγ, and Bγ), plus a motor variability pa-
rameter and pmax. The price accumulation model contained
only 6 free parameters, including a lone utility α, start point
variability sv, start point biases for the three conditions sbuy /
ssell / sCE , and pmax. The thresholds for speed and accuracy
conditions were fixed to 2 and 4, respectively, to set the scale
of the price accumulation model – because they trade off with
other parameters when only prices and not response times are
used, there is not much to be gained from estimating them
freely.

Both models were evaluated using Bayesian methodology
based on a Hamiltonian Markov chain Monte Carlo sampling
procedure. The procedure used 4 chains of 5000 samples
each. Each participant was estimated separately, allowing us
to examine individual differences between people in poste-
rior model parameter estimates. The priors on the beta pa-
rameters for the prospect theory model were all set as uni-
form distributions on Unif(0,30) 4 the motor variability prior
was set as an exponential distribution Exp(1), and pmax for
both models was set as a uniform on (0,1). The priors for
the price accumulation model were α ∼ Normal(.9,.3), all sβ

were uniform on (0,2) and sv was uniform on (0,1). Note that
sv was fit as a fraction of the threshold θ to avoid situations
where the start point exceeded the choice boundaries.

We used the maximum a posteriori [MAP] values of each
parameter (maximum likelihoods) to generate posterior pre-
dictions and compare the models to one another. The results

4As shown later, the results of the model comparison are so ex-
treme that using more constrained priors will not be enough to help
the prospect theory model, and in fact this appeared to be a largely
reasonable range for the priors based on the outcome of the prospect
theory parameter estimates, as the posterior means lined up with the
prior mean as well as those found in past work (such as Nilsson et
al., 2011)
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Figure 11. Observed (x) versus predicted (y) price based on
the maximum posterior parameter values of the models. Lin-
ear trend lines are included to illustrate model performance
relative to perfect performance (dashed black line)

are shown in Figure 11. For each response made by partici-
pants, we generated 11 predictions from each model and took
the median price predicted by the model. The actual price is
shown in the x-axis, while the prediction derived from the
model is plotted on the y-axis.

In general, the prospect theory model (top panel) tended to
overestimate the prices that would be assigned to low-payoff
gambles, resulting in over-prediction of prices on the low end
of the scale. This was because of the difficulty it had in pre-
dicting the skew of the distributions – even with the trial to
trial variability specified by beta parameters, prospect theory
could not pick up both the left-skew in price responses for
high probability gambles and right-skew for low probability
gambles simultaneously. It had particular trouble with the

left-skew of low-payoff, high-probability gambles (p-bets):
while prospect theory can capture the right skew of distri-
butions through variability in utility parameters (Figure 9),
it appears to have trouble capturing the left-skew of high-
probability gambles even when its parameters are permitted
to vary according to a skewed beta distribution.

Interestingly, this over-estimation is actually in line with
preference reversal phenomena. Prospect theory would not
predict reversals because the same valuation process is used
in both pricing and decision. The over-pricing of p-bets
would allow it to capture choices better, as participants tend
to choose p-bets over d-bets in binary choice. But in the case
of pricing, such a tendency results in poorer performance.

Conversely, the price accumulation model does extremely
well in predicting the prices assigned on each trial, shown
in the bottom panel of Figure 11. It has a slight tendency
to underestimate the prices assigned to high-value gambles,
perhaps due to influence of the utility parameter α, but ul-
timately it is hard to point out any areas of clear, systematic
misfit. With a value of r = .83, it appears to be accounting for
almost 69% of the variance in prices elicited over the course
of the experiment.

Table 1
Bayesian information criterion (BIC) and log likelihood (LL)
for each individual based on maximum a posteriori estimates
from the prospect theory model (PT) and price accumulation
model (PA)

Participant # BICPT BICPA LLPT LLPA
1 87523 38257 -43718 -19107
2 77748 37465 -38831 -18711
3 66954 32926 -33435 -16442
4 83490 32203 -41702 -16080
5 82928 32099 -41421 -16028
6 89239 33108 -44576 -16532
7 69150 24626 -34533 -12292
8 77767 38623 -38841 -19290
9 88291 61986 -44102 -30971
10 90041 69330 -44977 -34643

This difference between the models in apparent perfor-
mance is also clearly reflected in model fit statistics. The
BIC difference between the models for each participant, cal-
culated based on the maximum a posteriori parameter esti-
mates, is given in Table 1. For each participant, this BIC dif-
ference is at least 26000, reflecting overwhelming evidence
for the price accumulation model over the random utility
prospect theory model. This is not simply due to the price
accumulation model having fewer parameters, either: the dif-
ference in raw log likelihoods (which can be computed by
summing the fourth column and fifth column for prospect
theory and the price accumulation model, respectively) is
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206040 favoring the price accumluation model. 5

Overall, the model comparison strongly favors the price
accumulation model. Whereas random utility prospect the-
ory tends to overestimate the prices assigned to low-value
gambles (especially p-bets), the price accumulation model
provides a solid account of the variation in prices across all
conditions and individuals. In the next section, we examine
some of its posterior predictions, including distributions of
prices, response times, and binary choices.

Price accumulation performance

We noted in the previous section that fitting of the price
accumulation model as a multi-step process. For the pur-
poses of the model comparison, only six parameters of this
model were relevant. However, it is able to predict much
more data than prospect theory. With the addition of three
parameters, it will also predict the joint distribution of prices
and response times on the task. These include the two thresh-
old parameters that were fixed in the previous comparison
(θspeed and θprec) along with a non-decision time parameter
ndt, which indexes the amount of time taken to encode the
gamble stimulus and enter a response once it had been deter-
mined through the price accumulation process.

To fit the model to response times, we fixed the start point
and sensitivity parameters at their maximum likelihood val-
ues from the price-only model and allowed ndt, θspeed , and
θprec to vary freely when estimating the distributions of re-
sponse times. This ensured that the parameters relevant to the
distributions of price were given priority over those relevant
mainly to distributions of response times, although the model
ultimately provided excellent fits to both outcomes (Figures
8 and 12) so this was ultimately not a substantial concern.

Because there is not a straightforward analytic solution to
the likelihood of the model, we used kernel-based probability
density approximation and approximate Bayesian computa-
tion to generate a likelihood from simulated data (Holmes,
2015; Turner & Sederberg, 2012; Palestro et al., 2018). For
each response in the data set, we simulated 50 trials from
the model under the same conditions (same gamble, time
pressure, price type), and then computed the likelihood of all
responses made under that condition by putting together all
the simulated trials from that condition and passing an opti-
mized kernel density estimator over the simulated trials. This
procedure matched the number of simulations to the number
of corresponding trials, ensuring that a representative sam-
ple of model simulations was produced on each likelihood
approximation. It also apportioned the computational effort
according to the importance (number of data points) of each
condition and gamble.

Otherwise, the same procedure we outlined above was re-
peated to fit the response time distributions, with the priors of
θ ∼Uni f orm(.1,5) and ndt ∼Uni f orm(0,2). The resulting
modal posterior (maximum likelihood) estimates are given in

Table 2.
There are a number of notable properties of these param-

eter estimates. First, nearly all participants (with the excep-
tion of participant 4) had price sensitivity parameters α that
correspond to risk-averse utilities. This indicates that most
participants represented larger prices as more similar to one
another than smaller prices, and results in greater variability
in prices when the potential payoffs are greater. It also indi-
cates, if these parameters translate to binary choice, that most
participants would select a safe option over a risky option. In
the next section, we use these parameter estimates to make
an out-of-sample prediction for the choice condition to show
that it results in preference reversals.

Another notable but expected property is the consistency
with which initial bias was estimated as higher in the sell-
ing condition than in the buying condition (ssell > sbuy). The
difference in starting points in the model is the source of the
buying-selling gap (Birnbaum & Zimmermann, 1998) and
results in the differences in skew between the two distri-
butions of prices. These resulting distributions are shown
in Figure 12 – the model is readily able to capture the es-
sential properties of prices, including right-skew for low-
probability gambles, left-skew for high-probability gambles,
greater right-skew for buying prices, and greater variability
for more uncertain gambles (with outcomes near 50%).

The difference between starting points for buying and sell-
ing prices also indicates that initial prices for selling are in-
fluenced heavily by the maximum payoff, as the start point is
a multiplier on the maximum payoff: in essence, in a regres-
sion framework it can be viewed as the slope of the effect of
maximum payoff on initial price. Conversely, buying prices
are less strongly influenced by the maximum payoff, con-
sistent with prior work examining the asymmetry between
buying and selling (Carmon & Ariely, 2000). Furthermore,
the starting point for certainty equivalents is much closer to
that of selling prices than buying prices, conceptually in line
with the finding that selling prices are less ‘biased’ (Yechiam
et al., 2017) and thus closer to what should be a perspective-
neutral condition (CE).

The positions of the initial states will also determine how
the mean price changes over time (i.e., under time pressure).
If a starting point is especially high, the corresponding type
of price will start high and come down, on average. Con-
versely, if a starting point is especially low the corresponding
type of price will start low and come up as a decision maker
considers the outcomes of the gamble. This naturally results
in the converging prices shown in Figure 5. While the model

5We also fit a prospect theory model using the more traditional
Gaussian random utility rather than beta random utility (modeled
after Nilsson et al., 2011; Scheibehenne & Pachur, 2015, although
not using a hierarchical implementation so as to match the structure
of the other models tested). This model fared overall worse than the
beta model (overall BIC = 591420, r = .58, ρ = .58)
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Table 2
Modal (maximum likelihood) posterior model parameter estimates for each participant. Parameters most relevant to response
distributions are presented in the left columns, while parameters most relevant to response time distributions are presented in
the columns to the right of the dividers.

Pricing (response) Pricing (RT) Choice (response + RT)
Participant # α sv sbuy ssell sCE pmax θspeed θprec ndtp θc,prec θc,speed ndtc

1 0.91 0.39 0.33 1.00 0.85 0.04 1.71 4.10 0.51 2.90 1.62 0.84
2 0.49 0.91 0.61 0.92 0.96 0.28 0.91 4.00 0.75 1.94 1.93 0.66
3 0.77 0.46 0.46 0.93 0.98 0.00 1.15 1.51 0.24 2.34 0.97 0.45
4 1.29 0.32 0.35 0.96 0.77 0.00 2.23 4.33 0.30 3.15 1.23 0.72
5 0.77 0.86 0.54 0.82 0.89 0.00 2.17 4.80 0.74 4.05 1.31 0.72
6 0.94 0.78 0.32 1.22 0.75 0.00 1.48 3.86 1.03 3.17 1.28 0.73
7 0.77 0.74 0.55 1.08 0.98 0.00 1.77 4.60 0.99 3.77 1.17 0.59
8 0.47 0.86 0.75 1.00 0.97 0.00 1.64 3.12 1.45 4.72 0.97 0.81
9 0.90 0.64 0.47 1.16 0.87 0.08 1.71 2.80 0.48 3.24 0.85 0.69
10 0.74 0.27 0.23 1.45 1.00 0.02 1.05 2.51 0.73 2.74 1.42 0.92

Figure 12. Model predictions (lines) of the distributions of
prices (histograms) for buying (blue) and selling (pink) re-
sponses for three example gambles.

predicts that different types of prices will converge over time,
it does not strictly imply that buying prices will increase or
selling prices will decrease. If the mix of gambles presented
to participants has an unusually low rate of success, for ex-
ample, then the initial state for buying may actually be higher
than the expected utility of most gambles. In these cases, we
might expect both the buying and selling prices to decrease
when time pressure is relaxed because the initial points are

are both higher than the utility of the gamble. This is what
we found in pilot data using a similar paradigm but a differ-
ent mix of gambles (Kvam & Busemeyer, 2018). The model
is able to account for both patterns of data via the relation of
start points to gambles.

Finally, as we might expect, thresholds were substantially
higher in the precision than in the speed condition. This
is in line with the multitude of previous findings on the
speed-accuracy trade-off (e.g., Wickelgren, 1977; Vickers &
Packer, 1982; Heitz & Schall, 2012) and the difference in
response times between speed and accuracy conditions in-
teracts with the start point bias to ensure that the difference
between buying and selling prices is larger in the speed con-
dition than in the precision condition.

From these maximum posterior values, we generated pre-
dictions for response distributions and response time dis-
tributions. Fits to individual participants’ response and re-
sponse time data are provided on the Open Science Frame-
work at osf.io/tfm4e. The model reproduces both of these
distributions of these prices will high fidelity, which is illus-
trated in the aggregate fits to results shown in Figures 8 and
12.

Mouse tracking patterns. Although the process of con-
necting mouse tracking data to model parameters is not nec-
essarily well-established, the model’s ability to connect to
mouse tracking data is potentially highly desirable. To do
so, we used the angle of accumulation predicted from the
model at each point in time (Figure 10) and used it to predict
a mouse angle at each point in time during a trial. This was
done by taking the MAP estimates from the model and using
them to generate one simulated trial (with the same gamble
information, participant, and trial conditions). For the sim-
ulated trials, we recorded the trajectory of the accumulation
process at every 50 ms interval, yielding approximately 9500
simulated trajectories for the same number of real trials. This
ensured that the simulated trajectories aligned with the num-
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ber of trials and the mouse tracking sampling frequency used
to analyze the experimental data. Also as with the real data,
these were pruned for exceptionally long (> 10s) or short
(< 300ms) response times.

For each of the simulated trajectories, we took the price
that was most favored at each point in time, which was given
by the angle of the state relative to the origin. This allowed
us to compare it to the mouse locations in the experimental
data that were given by the angle of the mouse relative to the
scale 1.

Figure 13. Model prediction for mouse trajectories in the
buying (blue), selling (red), and certainty equivalent (orange)
conditions. Filled area indicates ±1 unit of standard error de-
rived from a simulated data set from the model that matched
the real data set in its size and assortment of gambles and
conditions.

The results of this posterior prediction are shown in Figure
13, which can be compared to Figure 6. The mean trajectory
derived from the simulated trials is shown in dark blue, red,
and orange for buying, selling, and CE trials, respectively.
Critically, the mouse trajectories were assumed to start after
the non-decision period had elapsed, which depended on the
particular participant. This meant that the first movement
away from the origin occurred at 240 ms, when Participant #
3’s non-decision time had elapsed. Then participant #4 was
added at 300 ms, participant #9 at 480 ms, and so on up until
the final participant (#8 at 1450 ms). This is why the trajec-
tories appear more jagged toward the leading edge – as each
participant joins the set of accumulating processes, their data
is added altogether into the set of mouse trajectories.

While not lining up completely perfectly with the actual
mouse trajectories – surely in part because not all internal
cognitive processes are expressed through mouse movements
– they do bear a striking resemblance to the overall trajec-
tories observed in the experimental data. At minimum, the
trajectories derived from the posterior parameter estimates

follow qualitatively the pattern observed in the data. This is
promising in terms of leveraging process data to inform the
model – with further work, it may be possible to estimate
model parameters from the mouse trajectories (or possibly
eye tracking data, if it is gathered instead) in order to bet-
ter inform our understanding of individual differences in the
pricing process. At present, it seems sufficient to note that
the model is successfully reproducing the diverging and then
converging pattern of trajectories, which should be a sig-
nature of the underlying cognitive process in judgment and
decision-making scenarios (Koop & Johnson, 2011; Cheng
& González-Vallejo, 2017; Cox et al., 2012; Freeman et al.,
2011; Schulte-Mecklenbeck et al., 2011)

Choice. Thus far we have focused almost exclusively on
price, in part because the novelty of the price accumulation
model is specifically related to price. In part this is because
preference reversals and predictions for choice probabilities
were covered thoroughly by Johnson and Busemeyer (2005),
who showed that a mental simulation-based model could be
implemented as a variant of decision field theory [DFT]. The
price accumulation model would be identical to this DFT
model for choice, creating preference reverals in a similar
way, but it is still enlightening to examine how well it ac-
counts for the empirical data from the binary choice task.

To fit the binary choice and corresponding response time
data, we took the utility parameter estimates from the price
accumulation model (Table 1, α) and used them to compute
an expected utility for each gamble in the set. These were
then fed into a diffusion model by directly calculating the
drift rate using the formulas provided by the decision field
theory model in J. G. Johnson & Busemeyer (2005). Be-
fore even fitting the choice response time data, we can derive
directional predictions from these parameter estimates for
choice – an entirely out-of-sample prediction made based on
the results of the pricing conditions. To perform this cross-
validation, the mean difference in utility is given by subtract-
ing the expected utility of the lower-payoff, safer p-bet (S =
Safe) from the expected utility of the higher-payoff, riskier
d-bet (R = Risky).

µS>R = EU(S)−EU(R) = pS · xα
S − pR · xα

R (5)

If µS>R is greater than 0 for a given pair of gambles, then
a participant will on average select the safe gamble S over
the risky gamble R. If it is negative, then they will select
the risky gamble on average. A particular value of α will
therefore give us a directional prediction for a given gamble
pair about which alternative, on average, a participant should
select.

When we compute µS>R for each gamble (using each indi-
vidual’s α estimate from the pricing data) and use it to simply
predict the direction of each choice, we correctly predict on
average 75.8% of the actual responses in the data set. As
a out-of-sample cross-validation of the price model, this is
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exceptional – nearly all of the gamble pairs were approxi-
mately matched in terms of expected value, so predicting any
decisions with accuracy well above 50% is nontrivial. That
the model was able to make these predictions simply by esti-
mating α from the relative distribution of prices assigned to
high- and low-payoff gambles suggests that it is tapping into
some true underlying representation of value that is common
to both pricing and decision processes.

The value of µS>R only gives us the average difference
in utility between the two alternatives, but does not by it-
self allow us to predict distributions of response times. The
drift rate in decision field theory is given by considering not
only the mean utility difference, but how often a decision-
maker will mentally simulate contrasts between the gambles.
Based on the same idea from the pricing model above, it sug-
gests that a decision maker at each time step draws an out-
come of the two gambles and uses the difference between the
outcomes to shift their preference toward one gamble or the
other. The average rate of motion toward the p-bet is given
as a function of the difference between the value of the p-bet
VS(t) and the value of the d-bet VR(t) at any given point in
time (see J. G. Johnson & Busemeyer, 2005, , Equations 1-3,
for the complete derivation):

d =
E[VS(t)−VR(t)]

E[VS(t)−VR(t)−µS>R]2
(6)

The value of d therefore corresponds to the average rate of
sampling information in favor of the p-bet, which provides
the drift rate in a Wiener diffusion process. We were there-
fore able to feed the values of d into a diffusion model as
a fixed drift rate for each trial, using them to estimate the
overall rates of selecting the d-bet and p-bet alongside the
distribution of response times associated with each decision.
The choice threshold and non-decision time were then fit
freely with these fixed drift rates using the dwiener package
in JAGS (Wabersich & Vandekerckhove, 2014). The prior
on both speed and accuracy condition thresholds, for each
participant, was a uniform distribution on (0,5), and the prior
on non-decision time was a uniform distribution on (0,1])
seconds. Bias was fixed at 0.5 so we could see how well drift
alone would account for differences in choice proportions.
As before, there were 4 chains of 5000 samples each, with
1000 burn-in samples. All chains were inspected visually
and via R̂ for convergence (Gelman & Shirley, 2011), and
the model had little trouble converging (mainly because it
was an extremely well-constrained model with only 3 free
parameters per person used to predict 300-500 decisions and
response times). Since the thresholds and non-decision time
do not determine the direction of choice – instead only deter-
mining how close choice proportions will be to 50% – the α

estimates are mainly responsible for the choice proportions
generated by the model. Thus, the average directional pre-
dictions will be in line with those of µS>R, but the model

will also account for choice variability and the distributions
of response times. The resulting modal posterior estimates
for thresholds (speed θc,speed and accuracy θc,prec conditions)
and non-decision time ndtc in the choice task are given on the
rightmost side of Table 2.

The parameter estimates for the choice model are largely
unsurprising. They were by and large within reasonable
ranges that we might normally expect for a drift-diffusion
model: thresholds for the precision condition were consis-
tently higher than those for the speed condition, and non-
decision times were all within 400-1000ms. Non-decision
time was slightly longer than for many perceptual choice
tasks and in some cases longer than the non-decision time
for the pricing conditions – likely due to the encoding time
associated with having to inspect four rather than just two at-
tributes before being able to make an informed choice. This
indicates that the main differences in response time between
choice and pricing conditions are largely the result of deci-
sion processes as opposed to non-decision ones: participants
are investing more time into considering their responses in
price conditions than they are in binary choice conditions.
This may be a direct result of the greater number of responses
available in the pricing condition, reflecting an adjustment
in line with Hick’s law (Hick, 1952; Usher et al., 2002) or
Fitt’s law (Crossman & Goodeve, 1983) where participants
are more careful when they have more options to consider
and select.

The predicted choice proportions from the model, gener-
ated from the modal posterior parameter estimates for each
person, are shown in Figure 14. Model predictions were gen-
erated by simulating 10 iterations of each trial / choice partic-
ipants made (3437 choices, for a total of 34370 simulations)
and then using these to calculate the overall choice propor-
tion for each pair of gambles.
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Figure 14. Observed (x) versus predicted (y) proportions of
choices in favor of the safe option / p-bet.

Even though d-bets were predicted to have higher prices
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assigned to them, most of the choices were predicted to be in
favor of the p-bet, reflecting the preference reversals shown
in Figure 7. The strong correlation between observed and
predicted choices (r = 0.88) suggests that the model is doing
well at predicting participants’ choices, and thus has no trou-
ble predicting that p-bets should be favored in choice even
when d-bets are favored in pricing.

The model also predicted response times associated with
each of the choice trials participants completed. Individual-
level distributions of response times and the model pre-
dictions can again be found in the online supplement at
osf.io/tfm4e, but the aggregate prediction is shown in the top
panel of Figure 8. As with the distributions of price response
times, there are only minor deviations between the true distri-
bution (green histogram) and model prediction (solid green
lines) for the distributions of choice response times, suggest-
ing that the model is providing an adequate account of this
process-level measure as well.

A final curiosity that suggests the price and choice models
are tapping into common processes is the relationship be-
tween thresholds for choice and price as well as the non-
decision times for choice and price. Although these might
be expected to be extremely noisy given we only have 10
participants, they are related: matched within participants
by speed-accuracy condition, the thresholds across pricing
and choice conditions appear to be quite strongly correlated
with one another (linear r = 0.75, p = .0002; rank ρ = .70,
p = .0006), and non-decision time is positively related, if
not significantly so, between price and choice tasks (linear
r = .33, p = .34; rank ρ = .25, p = .49). This obviously a
post hoc examination of the parameters and not intended as
anything more than an interesting observation, but the fact
that these parameters seem to line up suggests that the model
is measuring some true underlying construct that is present
across conditions. Such a finding simply further demon-
strates the utility of the model in describing individual dif-
ferences in a meaningful way that connects behavior across
tasks.

Discussion

The primary goal of this paper was to develop and test
a model that could account for important characteristics of
pricing by using process-level mechanisms informed by the-
ories of cognition. It is the first to examine in-depth the dis-
tributions of prices people assign to items and how they vary
as a function of manipulations of payoffs, probabilities, price
types, and time pressure. Critically, the random utility exten-
sion of prospect theory missed many of the important dis-
tributional and all of the dynamic properties of these prices,
and as a result was thoroughly overcome by a model that in-
corporated theory about the underlying processes leading to
price generation.

The proposed price accumulation model was able to ac-

count for all of the important phenomena in the data through
relatively few cognitive mechanisms. The gap between buy-
ing and selling prices are attributable to differences in start
point, and the interactions between these start points and the
mental sampling process generate the difference in skew be-
tween the two types of prices. Because mental simulation
of outcomes is the mechanism by which the model allows
decision makers to accumulate support for different prices,
the distributions will also be sensitive to the binomial distri-
bution of outcomes produced by the probability of winning
the gambles. Specifically, this binomial will be right-skewed
for low probabilities, left-skewed for high probabilities, and
have large variance for probabilities near 0.5. As a result,
prices given to gambles with win probability near 0 or 1 will
be more tightly distributed and more consistent in addition to
being more strongly skewed. The stochastic nature of these
binomial distributions mean that prices assigned to gambles
with high variance will have greater entropy, and thus be less
reliable. This was an a prior prediction of the mental simu-
lation process that did not depend on specific starting points
or threshold parameters, and it is borne out in the empirical
data as shown in Figure 4.

The price accumulation model also incorporated dynamic
elements that allowed it to predict different distributions of
prices over time. The dynamics of the accumulation pro-
cess itself do not need to be parameterized, as the step time,
length, and probabilities are all fixed or given by the stimu-
lus. But the thresholds for accumulation help determine how
the dynamics result in distributions of prices in the speed em-
phasis and precision emphasis conditions, allowing them to
exhibit greater initial bias at earlier time points by triggering
responses early in the speed condition and allowing for this
bias to wash out at later time points by triggering responses
later in the precision condition.

A summary of the important phenomena covered here is
given in Table 3. As shown, prospect theory is only capa-
ble of produce two out of the ten important phenomena out-
lined in this paper. Furthermore, even another dynamic and
stochastic model, the sequential value mathing model (SVM
J. G. Johnson & Busemeyer, 2005) is not capable of captur-
ing all of the important effects. In the next sections, we dis-
cuss why this is the case and why one might favor the price
accumulation model over other dynamic models.

Growing or shrinking differences?. One particularly
curious finding in the study reported here is that buyer-seller
differences grew smaller over time, in line with predictions
from an anchoring and adjustment approach to pricing (Carl-
son, 1990; Epley & Gilovich, 2006; Pachur & Scheibehenne,
2017). While consistent with anchoring, this result diverged
from some previous work suggesting that buyer-seller differ-
ences increased with deliberation time, essentially reversing
the effect found by N. J. Ashby et al. (2012, see Figure 2).
In this past work, the authors emphasized attentional differ-
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Table 3
Table of important phenomena reported in the paper and the price accumulation model mechanisms that allow it to account
for them. We also indicate whether random utility extension of prospect theory (RUPT) can account for each phenomenon in
the rightmost column.

Behavioral phenomenon (Description) Figure PA model mechanism RUPT

Buyer-seller gap (Buying prices tend to be lower than
selling prices for the same gamble)

3, 5, 12 sbuy, ssell , sCE Yes

Effect of time pressure (Response times are faster,
buyer-seller gap is bigger)

5 sbuy, ssell , sCE , θspeed , θprec No

Skew of buying vs selling (Buying prices are more pos-
itively skewed than selling)

3, 12 sbuy, ssell , sCE , accumulation
process

No

Skew of low vs high % (Low % gambles positively
skewed, high % negatively skewed)

3, 12 parameter-free No

Unreliability vs gamble variance (Greater variance in
expected payoff leads to lower reliability)

4 parameter-free No

Variance of prices from max $ (Higher payoffs result
in greater variance in prices)

4 α Yes

Mouse trajectories (Buying and selling trajectories di-
verge then converge)

6, 13 All No

Preference reversals - price & choice (Tendency to
choose safe gamble over risky in choice, but price risky
gamble higher than safe)

7 α, sbuy, ssell , sCE No

Preference reversals - buying & selling (Selling
prices tend to favor high-payoff gambles more often than
buying prices)

7 sbuy, ssell ,α, accumulation pro-
cess

No

Response times (Right-skewed distribution of response
times in price and choice)

8 θspeed , θprec, ndt No

ences between buyers and sellers, where buyers seemed to
focus on negative aspects of the stimuli whereas sellers fo-
cused on positive ones. This difference in attention caused
buying and selling prices to diverge rather than converge.
Although seemingly at odds with anchoring and adjustment,
the present model does in fact possess a mechanism that can
handle these results. Namely, the information search process
can also be biased by either over-sampling high outcomes
(for sellers) or by over-sampling low outcomes (for buyers).

The presence of these dual mechanisms has been sug-
gested in past work delving into the properties of the endow-
ment effect and buyer-seller gap. The response bias as well
as the information search and apparent stopping rules con-
tribute to this gap in different ways. Not only do buyers and
sellers appear to strategically mis-represent the prices they
are willing to pay or accept (respectively), which appears as
a response bias (Pachur & Scheibehenne, 2017), but they also
tend to stop considering new information when they have just
drawn a piece of information that aligns with their initial bias
(Pachur & Scheibehenne, 2012). This work by Pachur &
Scheibehenne has illustrated both of these points using deci-
sions from experience, where participants literally draw and
experience outcomes from different risky prospects, thereby
allowing us to understand the external sampling process. It
seems only natural that the same type of sampling process

translates to internal samples, where participants might start
with an initial price bias, pay attention to samples that agree
with that bias, and then stop their internal sampling process
when simulated a congruent outcome from the gamble. As
we outline below in the the comparisons and extensions sec-
tion, the price accumulation model actually integrates these
disparate sources of bias, with the exception of attention bias,
which could easily be integrated into the model should the
data indicate it is necessary.

An attentional mechanism can also bias the information
that participants search for over time or the relative weight
given to different attributes when we move beyond simple
gamble stimuli and into consumer choice sorts of scenarios.
Early work by Birnbaum & Stegner (1979) suggested that
instructions to take the point of view of a buyer or seller
resulted in greater weight assigned to information sources
that yielded lower or higher value estimates, respectively.
This would line up with work on confirmation bias (Nicker-
son, 1998), where people tend to search for information that
agrees with what they already believe – i.e., a buyer might
believe they deserve a low price while a seller would believe
they deserve a high price to give up their item and system-
atically look for good or bad information, respectively. The
empirical results of the present experiment and in our previ-
ous work (Kvam & Busemeyer, 2018) show that buyer-seller
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differences are more pronounced earlier in a trial, however,
which is backed up by the process tracing data (see Figures
5 and 6). This seems to suggest that biased sampling of in-
formation is not necessarily responsible for the gap between
buyers and sellers in this experiment, but rather that this bias
is present initially and actually washes away as the decision
maker considers information about the gamble.

It may be the case that further work is needed to reconcile
the two potential sources of buyer-seller asymmetries; it is
entirely possible that biased sampling is at play in our ex-
periments but that it is overall insufficient to overcome the
convergence of prices in the mean. Such a reversal may be
related to the scale of response times observed across differ-
ent studies: while convergence is seen on the scale of 2.5 to
5 seconds in our experiments, divergence was observed on
the scale of 5 to 15 seconds in the work by N. J. Ashby et
al. (2012). Perhaps the most coherent solution to this prob-
lem is that biases based on seeing the maximum payoff first
wash out with initial sampling (0-5 seconds to leave the start
point), but are then reinstated by attentional processes that
bias the sampling process in favor of positive (seller) or neg-
ative (buyer) aspects of the gambles or items. Such a finding
would align with early work on cognitive dissonance (Fes-
tinger & Walster, 1964; Walster, 1964), where preference
strength [in this case reflected by price] takes an initial dip
before bolstering mechanisms like biased information search
kick in and drive preferences back toward the bias-favored
response. The price accumulation model can handle both re-
sults by building bias into the start point (0-5s result) and/or
into the accumulation process (5-15s result), and so it can
serve as a theoretical basis for exploring these questions fur-
ther.

Common mechanisms despite preference reversals.
A large body of work in economics has explored explana-
tions for the preference reversal phenomena that appear be-
tween pricing and choice, many of which are consistent with
the quantitative model that we propose here. For example,
Butler & Loomes (2007) indicated that preference or re-
sponse imprecision may be at play in creating differences
between valuations expressed as price responses and those
expressed in terms of binary choice. They suggest that an-
chors – such as the maximum payoff for a particular gamble –
may create points of reference that draw participants (whose
prices or preferences are uncertain) toward them (Loomes
et al., 2009). Our empirical findings certainly reflected this
proposal, as the relative poor reliability of price responses
(Figure 4) and noisiness of decisions (Figure 7) both indi-
cate that people have some intrinsic uncertainty about their
valuation expressed in both pricing and choice. Further-
more, the model reflects an anchoring and adjustment pro-
cess, whereby the maximum payoff creates an initial price
point that is modified as a person considers the likelihood of
that payoff (Carlson, 1990), thereby giving greater weight to

the payoff in pricing procedures, referred to as scale incom-
patibility (Tversky et al., 1990).

Scale incompatibility (anchoring) and stochastic elicita-
tion processes seem to be the most popular explanations for
preference reversals in the economic and psychological liter-
ature (Tversky et al., 1990; Butler & Loomes, 2007; Cubitt
et al., 2004; Loomes & Sugden, 1995; Seidl, 2002). Despite
some accounts proposing only one or the other, the combina-
tion of scale incompatibility and stochastic (error-inclusive)
processes seems to be necessary to account for preference
reversal phenomena (Schmidt & Hey, 2004). Thus, both of
these elements are an integral part of our proposed model, ex-
pressed in terms of the stochastic processes underlying both
choice and pricing following the initial bias or anchor (e.g.,
Figure 10).

Perhaps more interestingly, the price accumulation (pric-
ing) and decision field theory (choice) models can be de-
scribed using the same parameter value (α). Our models
and analyses therefore suggest that the underlying valuation
process (utility) component of choice and pricing share the
same assumptions about how people assign subjective value
to monetary outcomes, and yet preference reversals will still
arise as a consequence of the different structure of the elic-
itation procedures. The idea that there are common mecha-
nisms underlying both processes is reinforced by the ability
of the utility parameters derived from pricing to predict se-
lections made in the binary choice conditions, indicating that
the key “true” valuation (as opposed to perspective-specific
bias) part of the price model translates to choice. This is a
potentially appealing result for economic theories seeking to
understand or make reference to the invariant processes un-
derlying preference across methods of elicitation (Butler &
Loomes, 2007; Cubitt et al., 2004; Loomes & Sugden, 1995),
as it suggests that such an endeavor should be possible.

Comparisons and extensions. The two sources of bias
– starting point and accumulation – may wind up being a
point of departure between the price accumulation model
and the sequential value matching model (J. G. Johnson &
Busemeyer, 2005). The latter account uses similar cogni-
tive mechanisms to account for preference reversals between
price and choice, including starting point distributions and a
mental simulation process. When it only uses starting point
bias, the price accumulation model can in some ways be seen
as an extension of the SVM model to a continuous joint dis-
tribution of prices and response times, providing the addi-
tional mechanisms necessary for it to generate the variation
in distributions across conditions. However, price accumu-
lation diverges from this model in important ways. Perhaps
the most important way is in the stopping rule: the SVM trig-
gers a price response upon reaching a level of indifference,
whereas the price accumulation model triggers a response
when sufficient support for one price has been accumulated.
In a sense, the SVM contains a passive mechanism where
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the decision-maker “settles” on a particular price by failing
to gather sufficient evidence to move away from it, while
the price accumulation model contains an active mechanism
where the decision-maker generates support for a particular
price. This makes the threshold mechanism in the price accu-
mulation model line up more closely with the empirical data
suggesting that sellers tend to be more likely to stop after
sampling a high outcome and buyers tend to be more likely
to stop after sampling a low outcome Pachur & Scheibehenne
(2012). This is at odds with the SVM model, which suggests
that buyers would be more likely to hit a point of indifference
after stepping up from a lower price (and thus more likely to
stop after sampling positive information), and sellers would
be more likely to hit a point of indifference after stepping
down from a higher price (and thus more likely to terminate
after sampling negative information).

Conversely, the price accumulation model suggests that
a buyer, who would be toward the low/right part of the ac-
cumulation scale shown on the lower left panel of Figure 10,
would be most likely to terminate search when stepping right
/ sampling a negative outcome. Sellers, who would be to-
ward the top/left, would be more likely to terminate search
when sampling a positive payoff, because this takes them
more directly toward the threshold for high prices. Indeed,
if we examine what the final step direction was for buying
and selling prices for trajectories like those shown in Figure
10, buying trajectories stopped on a negative (zero) sampling
outcome approximately 48% of the time, while selling tra-
jectories stopped on a negative (zero) sampling outcome only
42% of the time (based on 10,000 simulated trials each; we
would expect both to be 45% if the stopping sample was un-
biased, because the gamble has a 55% chance of winning).
This difference would naturally be exaggerated with infor-
mation sampling biases for buyers and sellers, but certainly
hints that the model lines up the the empirical findings put
forth by Pachur & Scheibehenne (2012).

Another difference between the SVM model and the price
accumulation model is that the present model includes a
utility parameter (α) that distorts the representation of high
prices relative to low prices. This corresponds to the similar-
ity in representation of high prices insinuated by the utility
function as well as work on numerosity and number repre-
sentation (Feigenson et al., 2004; Longo & Lourenco, 2007;
Krueger, 1982). It is a potentially important ingredient that
partly accounts for the increased variability in prices as-
signed to high-payoff gambles shown in Figure 4. It adds
to the mechanisms in the SVM model that predict response
variance as a function of overall gamble variance (of which
maximum payoff is naturally a part). As near as it can be in-
terpreted, the SVM proposes a linear representation of prices,
as the scale is divided into even increments (i.e., a person
can step from $1 to $2, and $14 to $15, and these are func-
tionally the same). This different function of the utility pa-

rameter in the price accumulation model therefore seems to
reflect real differences in number representation that lead to
differences in price distributions. However, it remains to be
seen whether the greater variance in prices assigned to high
payoffs is due to greater sampling variance or differences in
representation because the minimum payoff was always zero,
and thus greater maximum payoff was conflated with greater
variance. One way to test this might be to match gambles on
maximum payoff or on variance: for example, compare the
variance of prices assinged to G1: 50% chance of $20, 50%
chance of $15 vs G2: 50% chance of $15, 50% chance of $10
(though one would have to find some way to match the vari-
ance of the utilities, rather than just the dollar amounts). A
natural extension of this work would test this question along
with those related to negative payoffs and multi-attribute /
multi-outcome gambles.

The models can also be integrated together, using mecha-
nisms that allow one or the other to be extended in different
directions. The SVM model, for example, includes mecha-
nisms that allow it to be applied to probability equivalents
(J. G. Johnson & Busemeyer, 2005). The price accumulation
model can borrow these mechanisms to account for distribu-
tions of probability equivalents and their associated response
times, and it could also be extended to responses like pref-
erence or favorability ratings. For example, to change the
response format from price, one need simply substitute a set
of ordinal or continuous ratings for the prices along the arc
shown in Figure 10 and examine how the hitting points are
related to the values of probability equivalent or favorability
rating judgments instead. The simplicity of the price accu-
mulation model is the key feature here. It may be the case
that the SVM model could be supplemented with additional
parameters and extended to generate predicts for response
times, but it would provide only a discrete approximation
of the continuous two-dimensional distribution of prices and
response times because it uses a discrete scale. Simulating
the price accumulation model and deriving its predictions is
probably the simpler solution, as it removes the search and
comparison layers in favor of a single support accumulation
mechanism.

Emphasizing how these models can be used together, we
have shown that the price accumulation model can use the
relations derived in Johnson & Busemeyer (2005) to make
successful predictions about preference reversals and binary
choice by using the parameters estimated from pricing. In
this way, they can be viewed as a complementary pair of
dynamic cognitive models that predict behavior in pricing
and binary choice conditions, where the price accumulation
model is used for price and the SVM model is used to map
its parameters onto a decision field theory model of decision-
making. The success of the pricing model to make out-of-
sample predictions for binary choice by using the DFT model
certainly suggests that they are accounting for common cog-
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nitive mechanisms underlying valuation.
Departing from two-outcome gambles into the realm of

losses, mixed outcomes, and multi-attribute / multi-outcome
lotteries as well as consumer goods are perhaps the most
interesting extensions of this work. Further work is surely
likely to indicate that the present model is incomplete and
requires additional mechanisms to account for prices and rat-
ings assigned in these new scenarios. These may include
mechanisms like rank-dependence or different weights for
low outcomes, as suggested by work on configural weight
models (Birnbaum et al., 1992; Birnbaum & Zimmermann,
1998). Such theories have difficulty accounting for the dy-
namic elements of decisions, so naturally the price accumula-
tion model might provide an avenue for them to be built into
one. The dynamic nature of the model and its connection
to process tracing procedures like mouse tracking will also
surely allow it to be supplemented with eye tracking data.
Such an integration would permit us to more directly mea-
sure attention and feed it into the price accumulation process
(as in the work of Krajbich & Rangel, 2011; Krajbich et al.,
2012) as well as evaluate what parts of a gamble, product, or
environment are considered in constructing price in the first
place (Pachur et al., 2018; Fiedler & Glöckner, 2012; Shi et
al., 2013; Vachon & Tremblay, 2014).

Conclusions

The distributions of prices, their dynamic shifts, and the
additional process-level measures like response times and
mouse trajectories each provide evidence against the static
and deterministic frameworks usually used to model pricing
tasks. Each of these sources of information point toward
a dynamic and distributional account of pricing, where the
properties of the gamble interact with the price type and the
time it is elicited to produce unique distributions of price re-
sponses. The price accumulation model provides cognitive
mechanisms that explain what changes across these condi-
tions – initial state (bias) changes across price type, threshold
changes across time pressure, and dynamics change accord-
ing to gamble attributes. These mechanisms allow it to easily
out-perform models like prospect theory that provide mainly
descriptive accounts of pricing and choice. By providing a
more complete and thorough account of the underlying pro-
cesses, this theory is able to predict new phenomena in pric-
ing as well as successfully relate price to preferential choice.
Our model therefore provides insight into what psychologi-
cal processes are shared across different methods of eliciting
value (utility representation), which might be thought of as
the invariant components of preference (Slovic, 1995).
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Price accumulation model details

The basic price accumulation model, fit to just an individual condition (ignoring differences

between buying, selling, CE and speed, accuracy as they feature separate parameters), has only

five parameters: utility / representation parameter α, starting point variability sv, starting point

bias sβ, threshold θ, and non-decision time ndt. In this study, we included a sixth contaminant

parameter pmax, used to account for cases where participants just reported the maximum payoff

as the value of a gamble. This parameter wound up only really being important for two

participants (mainly participant #2, and to a lesser extent participant #9), so it may not be the case

that it is a fundamentally important part of the model overall. Further studies could probably try

to remove these trials or participants, avoid their occurrence by ensuring participants are

following directions, or follow this same approach and model the contaminant process.

The priors for these parameters were chosen such that they restricted positive parameters to

be positive (e.g., ndt, θ) and to keep simulated response times within the 0-10 second range. They

were meant to be largely uninformative so as to let the data inform the model, but also to avoid

cases where the accumulation process failed to finish in a reasonable time (which usually just

leads to long response times, but can also cause the model to be unusable if some simulated trials

take too long to generate).

Fitting procedure

The approach we took to fitting the model in this study took multiple stages, which was

done for two reasons. First, prospect theory – even with a random utility component added on –

does not predict response times but only predicts distributions of responses. Therefore, it seemed

sensible to compare the price accumulation model to prospect theory purely on their ability to

handle the prices and then later extend the model to account for response times. The second

reason was that the price accumulation model, like most dynamic models of decision-making

(Ratcliff et al., 2016; Busemeyer et al., 2019), can produce the same behavior from different
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combinations of parameter values by varying them with a scaling factor. This means that one

parameter must be fixed in order set the scale of the model, or at least fixed for one condition

(Donkin et al., 2009). Fixing the thresholds in order to fit the other parameters allows us to set the

scale of the model for modeling the price distributions.

Fixing the parameters once they have been fit to the price distributions also allows us to

conduct a more stringent test of the model. Rather than allowing all nine parameters vary to fit

prices and response times, we only use six for price distributions and then three free parameters

for response times. This also ensures that the fit of the models to price distributions is maintained

when we move to modeling response times. In turn, this second step added a dimension to the

model in terms of its ability to handle multiple process-level measures, including both RT

distributions for speed and accuracy conditions (Main text Figure 8) as well as predict mouse

trajectories (Figures 6 and 13).

The price accumulation and prospect theory models were fit using a kernel density

estimation method to turn the simulated data into a truly continuous, 2-dimensional distribution of

responses and response times. This method has been effectively used to approximate the

likelihoods of several types of simulation-based models (Palestro et al., 2018; Turner &

Van Zandt, 2012; Turner & Sederberg, 2014), is reasonably efficient especially with the addition

of signal processing methods (Holmes, 2015; Lin et al., 2019), and can be easily adapted to a

two-dimensional joint distribution. For the price accumulation model, we can simulate a large

number of trials from the model, use the kernel density method to generate an approximate

likelihood, and then impute the likelihood of each combination of response and response time in

the observed data set.

This was combined with a Markov chain Monte Carlo method for estimating the posterior

distribution of parameters using a Metropolis-Hastings algorithm. For each new proposed sample,

the proposed parameters of the model were used to generate a set of simulated data, pass a kernel

density estimator over the simulated data, and impute the likelihood of the data by evaluating the

height of the kernel density estimator at the x, y (response, response time) location of each data
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point. The log likelihoods of each data point were then summed across all data from a single

participant to get the overall log likelihood of the participant’s data given the proposed model

parameters. These were added to the log likelihood of the priors for the proposed parameter

values to form the posterior likelihood of the proposed parameter values. For posterior likelihoods

that were greater than those of the current parameters, the MCMC process would then step to the

new proposed location in the parameter space, repeat the process for the next sample, and so on.

It is critical to note that simulation-based likelihoods have some variability in the

approximated likelihood function because they are generated based on simulated random draws

rather than a true probability density function. Therefore, it is possible to randomly sample a

likelihood for a given combination of real / experimental data and simulated data that is higher

than the “true” likelihood of the data for those parameter values (Lin et al., 2019). Therefore,

rather than re-using the same likelihood every time a set of parameters was used (for example, if

the process did not take a step to a new location), a new set of simulated data was generated and

the likelihood re-computed on every fourth step that was not taken. This prevented the sampler

from getting stuck on abnormally high likelihoods that were due to noise in the simulated data

and likelihood rather than truly greater likelihoods for particular sets of parameter values.

To fit each iteration of the price accumulation model and prospect theory model, we used 4

chains of 4000 samples, including 500 burn-in samples. It is possible to fit the prospect theory

model using traditional MCMC samplers rather than the simulation-based model, but simulation

versus analytic approaches can yield slightly different posterior likelihoods (Lin et al., 2019) and

so we used the same method to compute the likelihoods for both models. Reinforcing the

practical utility of the approach, we found no substantial differences in the likelihoods or

parameter estimates generated for prospect theory using the simulation method compared to a

JAGS implementation. For each sample, the approximate likelihood was generated by simulating

100 simulated trials for each real data point, and then calculating the likelihood of that data point

using the kernel density estimator. The various chains were visually inspected and used p̂

(Gelman & Shirley, 2011) to determine convergence. Finally, the maximum a posteriori (MAP)
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estimates used to generate the posterior predictive plots (Figures

Simulation and recovery

Despite its relative simplicity for a dynamic model of continuous responses, there are some

relationships between its parameters, and so it is critical to ensure that the various parameters are

identifiable and meaningful. The key way to establish this is by simulating data from the model

and then recovering that data (Heathcote et al., 2015). Doing so ensures that a know true

generating process can be accurately and precisely estimated, and allows us to understand where

and how the model estimates might be biased.

For the model recovery, we simulated 360 trials (approximately the number that we might

expect from one of the price conditions) across the same 72 gambles that were used in the actual

study. We then fit a 5-parameter version of the model to the data, fixing the start point variability

to set the scale of the model. We then estimated parameters of the model using 2 chains of 1000

samples each (200 burn-ins) and the simulation-based likelihoods as described above.

The results are shown in Figure S1. For the most part, parameters were estimated

reasonably well, with α (utility) and sβ (start point bias) being slightly under-estimated. This is

likely due to the two parameters trading off, as an increase in α that shifts the locations of prices

on the response scale can be partly compensated for by a corresponding increase in sβ that shifts

the location of the state on the price scale. Since the unique contribution of α is to increase the

variance of high-payoff prices, and these prices do not compose every gamble in the study, it is

reasonable that it might be estimated with somewhat lower accuracy and precision.

The other minor area of misfit seems to be in the threshold, where a few posterior estimates

were about 0.2 units higher than the true generating parameter. This seems to be related to

non-decision time, where there are two “islands” with thresholds low and non-decision time high,

and thresholds high and non-decision time low (Figure 1 row 5, column 4). This is a consequence

of the fairly commonly observed trade-off between non-decision time and thresholds, where

response times can become shorter by decreasing non-decision time or threshold or become
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Figure 1. Model recovery for the price accumulation model. The main diagonal slides show the

estimated posterior (histogram) compared against the true generating parameters (dotted black

line). Bottom-left plots show the scatter plot of samples compared against one another, while the

upper-right plots simply give the correlation between samples of the different parameters

longer by increasing non-decision time or threshold. This naturally results in a negative

correlation between the estimates, and one of the chains seemed to sample around a local

minimum along this ridge before migrating and “discovering” the true generating parameter

value. Fortunately, the modal posterior estimates for these parameters till reflect the bulk of

samples that were near the true generating parameter, but it might be wise for modelers to

exercise caution and be vigilant in inspecting posterior distributions to catch instances of

multimodality in future work using the model.

Although not entirely perfect, the model recovery was generally successful and suggests

that the model is at least able to estimate parameters with reasonable precision when we know

that it is the true generating process.
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Selective parameter disabling

A natural question to ask regarding any model is what contribution its parameters make to

the overall fit of the model. In order to ensure maximum parsimony, any parameters that do not

substantially contribute to the quantitative or qualitative can potentially be removed. Here, we

determine the usefulness of each of the main parameters from the model – including utility power

α, separate start points for different conditions sβ, start point variability sv, and the contaminant

distribution parameter pmax – by disabling them one by one and examining how the model fit

changes by doing so.

Utility parameter. The α parameter that controls the relative orientation of different

prices in the price accumulation model can be “turned off” by setting α = 1. In the realm of

expected utility, this would be equivalent to using the expected value of computations rather than

characterizing payoffs in terms of diminishing or increasing marginal returns. In the current

model, it is equivalent to assuming that the representations of all numbers or prices are

commensurate with their objective values – i.e., the psychological difference between $1 and $2

is the same as the difference between $18 and $19.

There are strong theoretical reasons to include a parameter like α in a model of valuation,

driven by fundamental principles related to both the economic concept of utility (Friedman &

Savage, 1948; Savage, 1954) and psychological concepts of number sense (Krueger, 1982).

However, removing α from the model at hand has relatively subtle effects. It reduces the ability of

the model to predict the variance of high-payoff gambles. This is shown in the left panel of Figure

S2 – when the parameter is removed from the model, it has trouble capturing responses to

high-payoff gambles like ($17, 60%) because the variance of the predicted distributions is too

small (and it also appears to bias estimates toward higher values than are observed in the data).

Removing the utility / representation parameter from the model naturally has consequences

for the quantitative fit. Overall, considering just the fit to the distribution of prices, removing this

parameter decreases like log likelihood of the model by 1620. The improvement in BIC conferred

by dropping a parameter is not enough to overcome this difference, as the overall BIC of the
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Figure 2. Performance of the model when the utility α parameter is removed (left) or when the

start point bias parameters β are removed.

model with α = 1 is 3230 higher than the model freely estimating this parameter (higher BIC

indicating worse fit).

Start point. In the price accumulation model, start point bias is mainly responsible for

differences in price between buying / WTP and selling / WTA conditions. Naturally, removing

this parameter results in just a single distribution of prices for buying, selling, and certainty

equivalent conditions. Interestingly, this is also true for fixing the start point variability parameter.

Because the strength of a starting point bias is modulated by the strength of the start point (degree

of start point variability), fixing sv = 0 is equivalent to removing all of the start point bias as well.

Doing so allows us to test both the presence of start point variability and bias as well.

Fixing this parameter to be equal to zero results in a distribution of prices shown on the

right side of Figure S2. Failing to differentiate between buying and selling prices results in this

model under-predicting the variance of responses in general because it misses the

between-condition variance that comes from this manipulation. As a result, it misses prices on the

high side in the selling condition and it misses prices on the low side in the buying condition.

As with the utility parameter, fixing the start point parameter(s) also has quantitative

consequences when it comes to predicting price distributions. Fixing it results in a log likelihood

drop of 3070. Since doing so effectively removes four parameters for each participant (three start

point biases and a start point variability), it could be the case that the reduction in complexity

justifies such a large drop in likelihood, but again the improvement in BIC conferred by having

fewer parameters is insufficient to overcome this difference (BIC of fixed model is 5761 higher).
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Fixing start point variability also has fairly dire consequences for the model’s ability to

predict response time distributions. Without this parameter, the distance from start point to

threshold is fixed on every trial. As a result, the response time distributions predicted by a model

lacking start point variability has much lower variance than the data (as shown in the main text in

Figure 6).

Contaminant parameter. Probably the easiest parameter to remove would be the pmax

parameter, as it simply signifies the prevalence of contaminant processes (participants giving the

maximum payoff as their price response). For eight out of the ten participants, this parameter was

effectively zero, and so it could easily be removed for all except two participants and have

minimal effect on the overall fit.

For the other two participants, however, the effect of setting pmax = 0 is quite significant.

The prevalence of responses at the maximum payoff (small humps at $17 in Figure S2)

necessitates the presence of this parameter for participants 2 and 9. Thus, the model does not

improve overall when it is removed for everyone, which results in a modest overall drop in log

likelihood of 200. The improvement in BIC conferred by dropping 10 parameters is 94.75 (10

times ln(13072)), and thus the overall BIC obtained by dropping pmax is approximately 305 points

worse (higher).

Threshold. There is little doubt that threshold shifts are necessary to account for

differences in response times resulting from time pressure. There are no reasonable alternative

options to predict the ∼2.5 second difference between speed-emphasis and precision-emphasis

conditions. However, the thresholds also seem to contribute to the model fit in terms of the price

distributions. Since prices tend to converge over time, differentiating between early and late prices

appears to be added value that is conferred by the threshold parameters. Fixing the two thresholds

to be the same results in a log likelihood decrease of 3190, even greater than the contribution of

the start point bias and variability parameters. However, it removes fewer parameters than fixing

the start point, so naturally the BIC for the fixed-threshold model is worse (6285 points higher).
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Decision field theory model

The decision field theory model that we used to predict choice and response times in the

choice condition was based on a simple version of the diffusion model (Ratcliff et al., 2016) and

implemented in JAGS using the dweiner package (Wabersich & Vandekerckhove, 2014). In the

version presented in the main text of the paper, we derived exact values for the drift rates based on

the utility parameter estimated from the price distributions. These were fed directly into JAGS as

fixed values, while thresholds and non-decision time were freely estimated. To fit the model, we

used four chains of 5000 samples, with 500 burn-in samples per chain. These chains were

inspected using the r̂ metric for convergence, and all were within reasonable tolerance. The

results of this analysis suggested that there was some degree of convergence between the price

accumulation model and decision field theory.

However, it may be the case that this only occurred because the drift rates were constrained

directly by the price model. It is worth double checking that the model reaches similar values for

drifts (as well as thresholds and non-decision time), so we examine the results of an analysis

based on freely estimated parameters for this same model. Here, thresholds were permitted to

vary between speed and precision instructions but all other parameters were fixed across

conditions. Table S1 shows the resulting estimates.

As shown, the estimates line up reasonably well with the results presented in the main paper

(Table 2). Thresholds for the precision condition are well above those for the speed condition and

generally in the same ranges, while non-decision times seem to be similar – if slightly shorter –

than the estimates from the original model. The estimates of α all seem to line up well with the

fixed values from the price model, showing the same trend toward risk aversion in people’s

decisions. The was one participant (4) who appeared to switch from risk-seeking to risk-averse,

but this participant was still the most risk-seeking out of all of the participants in the study.

The introduction of bias (β) appeared to be mainly responsible for the shifts in other

parameters. In this model, the “safe” (low payoff, high probability gamble) was set to be the

upper boundary, whereas the “risky” (high payoff, low probability gamble) was set to be the lower
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Table 1

Parameter estimates of utility α, thresholds for speed and precision conditions θs and θp,

non-decision time ndt, and predecision bias in favor of the safe gamble β. Estimates are

generated from the freely estimated decision field theory model of responses and response times in

the choice condition.

Participant α θp θs ndt β

1 0.8161 2.7406 1.7978 0.7037 0.3565

2 0.4922 2.0510 1.4181 0.5048 0.4742

3 0.7475 1.7091 1.3972 0.3162 0.4299

4 0.9373 2.8295 1.5578 0.5921 0.3733

5 0.7088 3.3444 1.7403 0.5718 0.4108

6 0.8384 2.6997 1.6560 0.6045 0.3600

7 0.7232 3.4655 1.7335 0.4203 0.3780

8 0.4632 3.1266 1.7991 0.6416 0.4372

9 0.8247 2.4949 1.2858 0.5550 0.4150

10 0.7122 2.3365 1.4867 0.7905 0.4364

boundary. An unbiased decision-maker would start at β = .5. Thus, a bias parameter above .5

would indicate an initial bias toward choosing the safe option, and one below .5 would indicate an

initial bias toward choosing the risky one. Most participants appeared to have a slight initial bias

toward choosing the risky option (β < .5), but then gathered information favoring the safe option

over time (α < 1).

This is perhaps not too surprising, as the first piece of information that participants would

typically look at is the maximum payoff of the gamble. This would “bias” them toward choosing

the risky option, first allowing them to accumulate information favoring the high-payoff, low

probability alternative before looking at probability information that pushed them toward the

low-payoff, high-probability (safe) option. This aligns well with work on two-stage or attention
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switching mechanisms (Diederich & Busemeyer, 2006; Diederich & Trueblood, 2018; Guo et al.,

2017), which suggest that an initial attraction toward a risky alternative (due to so-called System 1

reasoning) is eventually overcome by preferences for the safe one (due to executive control

exerted by so-called System 2 reasoning).
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