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Abstract

Delay discounting behavior has proven useful in assessing impulsivity across a wide

range of populations. As such, accurate estimation of the shape of each individual’s

temporal discounting profile is paramount when drawing conclusions about how

impulsivity relates to clinical and health outcomes such as gambling, addiction, and

obesity. Here, we identify an estimation problem with current methods of assessing

temporal discounting behavior, and propose a simple solution. First, through a

simulation study we identify types of temporal discounting profiles that cannot

reliably be estimated. Second, we show how imposing constraints through

hierarchical modeling ameliorates these recovery problems. Finally, we apply our

solution to a large data set from a temporal discounting task, and illustrate the

importance of reliable estimation within patient populations. We conclude with a

brief discussion on how hierarchical Bayesian methods can aid in model estimation,

compensate for small samples, and improve predictions of externalizing

psychopathology.

Keywords: delay discounting, hyperbolic discounting, hierarchical Bayesian

modeling, intertemporal choice
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Hierarchies improve individual assessment

of temporal discounting behavior

Introduction

Delay discounting is a psychological phenomenon where the subjective

valuation of a reward is lower than the objective value, in proportion to the amount of

time a person must wait to obtain the reward. Often, this phenomenon is measured

using monetary intertemporal choice tasks. These tasks are characterized by asking

subjects to decide between a smaller-sooner option, e.g. $10 now, or a larger-later

option, e.g. $20 in two weeks. A tendency to choose the smaller-sooner option can be

used to measure impulsive choice. Numerous explanations of how observers trade

reward for delay have been proposed, including exponential discounting models

(Becker & Murphy, 1988; Lancaster, 1963) as well as attention-based models (Cheng &

González-Vallejo, 2016; Dai & Busemeyer, 2014; Scholten & Read, 2010; Turner et al.,

2018), but the most common description is a hyperbolic function (Mazur, 1987). The

hyperbolic function allows for the estimation of the discounting rate (k) which is

unique for individuals based on their delay discounting behavior/ preferences.

Larger k values mean the larger-later option is more heavily discounted, signifying a

preference for the more impulsive smaller-sooner option. In numerous applications, k

has been used to generalize meaningful connections about how discounting behavior

is related to substance use disorders and addiction (Bailey, Gerst, & Finn, 2018; Bickel

& Marsch, 2001; Bickel, Odum, & Madden, 1999; Kirby, Petry, & Bickel, 1999) and

other risk-taking and health behaviors (Daugherty & Brase, 2010).

Despite the importance of accurately estimating the temporal discounting rate,

few analyses have investigated the recoverability of the parameters of common

temporal discounting models. Parameters of the same model may vary in their

recoverability. For example, in linear regression the slope and intercept of a line are

more difficult to estimate when the residual noise is high. Here, we first present a

simulation study to expose weaknesses of standard estimation procedures in the

hyperbolic discounting model. We found several types of common experimental
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designs where temporal discounting curves cannot be reliably estimated. We present

a simple hierarchical solution that solves the issues identified in our simulation study,

and provide code to facilitate our recommended approach. After illustrating our

solution with simulated data, we apply it to data from an intertemporal choice

experiment (Finn, Gunn, & Gerst, 2015). Here, we show that the more constrained

hierarchical estimates were more highly correlated with externalizing

psychopathology than nonhierarchical estimates. We conclude with a general

discussion emphasizing the importance of accurate assessment of temporal

discounting behavior.

Model Specification

To assess our ability to reliably model temporal discounting behavior, we made

a choice about the particular functional form. Although our results generalize to

other models of temporal discounting behavior (see Supplementary Material), we

focus on the hyperbolic function due to its prevalence and intuitiveness. In our own

applications, we noticed that there were occasionally reliability issues during the

model fitting process for some data structures. Unreliable (i.e., inaccurate, imprecise,

or both inaccurate and imprecise) estimates are a major concern when the goal is to

generalize a specific behavior (e.g., temporal discounting) to important societal

problems (e.g., addiction). It is therefore critical to identify where and when the

shape of the hyperbolic discounting model cannot be reliably estimated. In this

section, we specify the general form of the model, then discuss its construction, both

nonhierarchically and hierarchically, in a Bayesian framework.

To begin, the hyperbolic discounting function (Mazur, 1987) is

VLL = rLL
1 + kt

, (1)

where VLL is the subjective value of the delayed (larger-later) option, rLL is the

non-discounted value of the delayed option, k is the estimated discounting rate, and t

is the delay, in days, of the larger-later option. The likelihood of choosing the
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larger-later option is defined as

PLL = 1
1 + e−m(VLL−VSS) , (2)

where PLL is the likelihood of choosing the delayed option,m is the estimated

sensitivity to changes in the discounted value (Dai & Busemeyer, 2014; Dai, Gunn,

Gerst, Busemeyer, & Finn, 2016; Scherbaum, Haber, Morley, Underhill, & Moustafa,

2018; Wulff & van den Bos, 2018), VLL is the subjective value of the larger-later option

from Equation 1, and VSS is the subjective value of the smaller-sooner option. For our

purposes, the smaller-sooner option is always immediate (t=0 days) and thus we can

rewrite Equation 2 as

PLL = 1
1 + e−m(VLL−rSS) , (3)

where rSS is the amount in dollars of the immediate option.

Nonhierarchical implementation

In the nonhierarchical version of the model, we estimate a k and m pair for

every individual separately. Because we are interested in exploring the parameter

space, we want to have relatively uninformed priors. The priors for k andmwere

uniformly distributed from 0 to 10:

k ∼ U(0, 10),

m ∼ U(0, 10).

These priors are considered uninformative because of their distribution and

range. First, the range is constrained to be positive (as k andm can only be positive),

but the spread of the distribution is much larger than typical k and m values.

Additionally, a uniform distribution assumes the parameter could be any value

within this range with equal probability.
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Hierarchical extension

As we will show below (and see Supplementary Materials), the primary reason

for the unreliable estimation is the degenerative shape of the likelihood function at

the individual level. One solution to correct the shape is to construct a hierarchical

model where information can be shared across individuals. While we are certainly

not the first to propose hierarchical Bayesian modeling to estimate parameters of

delay discounting (Chávez, Villalobos, Baroja, & Bouzas, 2017; Vincent, 2016), we aim

to emphasize the importance of performing hierarchical analyses, which are made

significantly more convenient within a Bayesian framework. Constructing a hierarchy

across subjects allows us to use information from other subjects to compensate for

missing information or insufficient data. To facilitate construction of the hierarchical

model, we now specify truncated normal priors for both k andm:

ks ∼ T N (µk, σk, 0,∞)

ms ∼ T N (µm, σm, 0,∞),

where s indexes the subject, and T N (a, b, c, d) denotes a truncated normal

distribution with mean a, precision b, lower bound c, and upper bound d. The range

of the truncated normal constrains the estimates to be only positive, while still

remaining largely uninformative. Hence, µk and µm are the means, and σk and σm are

the precision terms, for k andm, respectively. We then assumed uniform priors from

0 to 10 for µk and µm:

µk ∼ U(0, 10)

µm ∼ U(0, 10),
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and exponential priors with rate one for both σk and σm:

σk ∼ Exp(1)

σm ∼ Exp(1).

The priors for µk and µm are analogous to the nonhierarchical priors for k andm.

Example code for fitting this hierarchical model in JAGS can be found here:

https://github.com/MbCN-lab/hierarchical-discounting/. For generalizability,

we create population level parameters for only one group (e.g. one µk and one µm

parameter). However, this framework can be extended to multiple groups based on

the research question or design of the experiment. For example, there could be a

hyperparameter for a control group and a separate hyperparameter for a treatment

group.

Simulation study

When applying the model to experimental data, we have no assurances on the

accuracy of our estimates, as the true values of the model parameters are unknown.

Hence, to properly assess statistical issues such as accuracy and precision, we must

investigate the model in an environment where the true parameter values are known.

Our first goal is to uncover areas of the parameter space that are problematic in terms

of recoverability. To do this, we ran two different simulation studies. In the first

simulation study, we defined a grid over the k andm space, generated data for each

value in the grid, and recovered the model parameters. We repeated this procedure

while varying the number of trials to explore the relationship between recovery and

experimental design. Our hypothesis was that the reliability of the model parameters

would increase systematically with additional trials. In the second simulation study,

we compared the accuracy of estimation between hierarchical and nonhierarchical

models. The hierarchical model incorporates more information, so we expected that,

especially for fewer trials, the hierarchical model would correct the degenerative

shape of the likelihood function.

https://github.com/MbCN-lab/hierarchical-discounting/
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Areas of unreliable estimates

Methods. To explore the effect of the number of trials on parameter recovery,

we generated data consisting of four different trial sizes: 30 trials, 50 trials, 70 trials,

and 150 trials. The trial sizes, delays, larger-later, and smaller-sooner options were

inspired by the experimental design used within Finn et al. (2015). Here, we will

discuss the results from the two extremes of 30 and 150 trials, though every trial size

was fit. The larger-later option was always $50, whereas the smaller-sooner option

was sampled from values from $2.50 to $47.50, in increments of $2.50. The delays

were uniformly sampled from the following set: 7, 14, 30, 90, and 365 days. We

defined a 100 by 100 grid of values within the joint (k,m) parameter space. The

sequence for k was from 0.01 to 1, increasing in steps of 0.01. The sequence formwas

from 0.05 to 5, increasing in steps of 0.05. For each pair of k andm across these ranges,

we calculated the VLL and simulated a choice. For each trial, the VLL was determined

by 50/(1 + k ∗ t), then the PLL was calculated by 1/(1 + exp(−m ∗ (VLL − VSS))). The

simulated choice was generated by randomly sampling from a Bernoulli distribution

with PLL as the probability of success. Preferential choices have been found to be

probabilistic, which this random sampling accounts for (Rieskamp, 2008).

Once the data were generated, we fit the nonhierarchical hyperbolic model

specified above using Just Another Gibbs Sampler (JAGS; Plummer 2003). We fit the

model five times for the five datasets generated for every pair of k andm values

across all four trial sizes. Each model was fit using three chains, where each chain

was initialized for 3,000 adaptations, with a burnin of 4,000 iterations, and 6,000

samples. Hence, posterior samples consisted of 18,000 samples. Chains were visually

assessed for convergence. Code for simulating data and fitting the nonhierarchical

model to these simulated data can also be found at

https://github.com/MbCN-lab/hierarchical-discounting/.

Results. Figure 1a shows the accuracy and precision of nonhierarchical k and

m estimates over the grid of parameter values. Precision and accuracy are important

considerations in evaluating parameter recovery. Ideally, for accuracy, the mean of the

https://github.com/MbCN-lab/hierarchical-discounting/
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posterior should be close to the true value of the parameter. We quantified accuracy

as the root mean-squared error (RMSE). RMSE is defined as

√
(k − k̂)2 + (m− m̂)2 ,

where k is the true k value, k̂ is the estimated k value,m is the truem value, and m̂ is

the estimatedm value. The RMSE is presented in the left column of Figure 1a.

Comparing differences in spread between the prior and posterior measures precision

and gives us some insight into how well the data constrain the estimate. This spread

is compared by dividing the standard deviation of the posterior by the standard

deviation of the prior. If this ratio is 1, the data do not provide much information

about the estimate, as the spread of the posterior is the same as the spread of the prior.

However, if the ratio is small, the data allow for precise estimates of the parameters.

The right column of Figure 1a shows the plots of the standard deviation ratios.

Each row in Figure 1a corresponds to the number of generated trials (30 or 150)

used to generate the data. As the number of trials increases, estimates become

simultaneously more accurate and precise across the parameter space. Furthermore,

across all trial sizes, small k andm pairs (i.e. k < 0.2 andm < 1), are most successfully

recovered compared to the rest of the sample space. In some cases, for large values of

m, the accuracy is high (low RMSE), but the precision is much lower (high SD ratio).

This pattern results from the selection of the priors. Because the prior was set to be

uniformly distributed from 0 to 10, even if the posterior is not constrained at all by the

data, the mean will still be 5. Thus, for values ofm closer to 5, we see relatively smaller

RMSEs, but not necessarily smaller SD ratios. Overall, we found large differences in

recoverability across the parameter space, especially when the experimental design

consisted of fewer trials.Table 1 summarizes these results across trial sizes.

Hierarchical versus nonhierarchical recovery

Methods. In the second simulation study, we explored the differences between

hierarchical and nonhierarchical estimation. First, 60 different k andm pairs were
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randomly generated within the same range as above (between 0.01 and 1 for k and

between 0.05 to 5 form). Data were generated for these pairs in the same way

described above. There were 240 different data sets fit to both models. The

nonhierarchical and hierarchical models were fit using the same model fitting

procedure described above.

Results. The hierarchical model provided consistently more accurate estimates

than the nonhierarchical model. Figure 1b shows the results of the simulated data fit

to the nonhierarchical and hierarchical models. As before, each row corresponds to

the number of trials generated, where the left column shows the k parameter and the

right column shows them parameter. In both models, each subject has a k andm

estimate, so to directly compare the two models, we show ks andms for the

hierarchical model, not the population estimates µk and µm. Simulated values are on

the x-axis, and estimated values are on the y-axis. Blue points represent the means of

the posterior estimates for the nonhierarchical model, red points represent the means

of the posterior estimates for the hierarchical model, and the black line shows where

the simulated and estimated values are equal.

Across trials, in both the hierarchical and nonhierarchical models, the RMSE

and standard deviation ratios were smaller than k than form (though this may be

attributed to the smaller range of true k values). Importantly, for k andm in both

hierarchical and nonhierarchical models, as trial size increases, estimated k andm

values converge to the true values. However, hierarchical estimates are consistently

closer to the true values than nonhierarchical estimates. This disparity is exacerbated

as the true values for k andm increase. The recovery of both the hierarchical and

nonhierarchical models are affected by trial size, but misestimates common in a

smaller number of trials are still closer to the true values for hierarchical estimates

than for nonhierarchical estimates. Yet, even in the context of 150 trials (where the

nonhierarchical model provided reasonable estimates for most of the simulated k

values) there are still multiple cases where the hierarchical model recovers the true

value but the nonhierarchical model overestimates the true value. This suggests that
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hierarchical analyses are still preferred even with a large number of trials.

We also examined the joint posteriors for the nonhierarchically and

hierarchically estimated k andm pairs shown in Figure 1b. The nonhierarchical

model displayed a clustering pattern at largerm values. This clustering pattern forces

the k values to become smaller, suggesting the flat shape of the joint likelihood

function may be causing this misestimation. However, once a hierarchy is introduced,

the increased information from the group-level parameters allows the

individual-level estimates to be “pulled in" by introducing a central tendency to the

likelihood when little information is present for that individual. This alleviates the

overestimation problem by imposing a low conditional likelihood Pr(individual |

group) for high values of k orm, thus drawing them closer to the other (lower)

individual-level estimates.

Real Data

In the previous section, we described a problem in the estimation procedure of

hyperbolic discounting and proposed using a hierarchical framework and/or larger

trial sizes to alleviate this issue. In this section, we apply this solution of hierarchical

Bayesian modeling to real experimental data of 622 subjects from Finn et al. (2015).

We compared the recovery and constraint of nonhierarchical and hierarchical models.

Additionally, the data from this experiment involved a variable number of trials per

subject, which allowed us to explore recoverability of nonhierarchical and hierarchical

models as a function of trial size.

Methods

Experimental paradigm. The data we investigated are part of a larger study by

Finn et al. (2015) on the relationships between intertemporal choice, working memory

capacity, and externalizing psychopathology. Here, we will give a brief overview of

the delay discounting task design, but refer to the original paper for more detail. A

total of 622 subjects completed the delay discounting task on a computer. They were

asked to choose between an immediate monetary option and a delayed monetary
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option. The amount of the immediate option ranged from $2.50 to $47.50 in

increments of $2.50. The amount of the delayed option was always $50. Note that the

delayed amount was always larger than the immediate amount. The delayed option

was delayed by either 1 week, 2 weeks, 3 months, 6 months, or 1 year. These delays

were then converted to days in the model fitting procedure used here and by Finn et

al. (2015). Each delayed option was presented in 1 out of 6 randomly presented

blocks. The block of a set delay consisted of both ascending and descending trials.

For ascending trials, the smaller-sooner option started at $2.50 and increased to a

highest possible value of $47.50 in increments of $2.50. As soon as a subject chose the

smaller-sooner option, the sequence of ascending trials ended. In descending trials,

the smaller-sooner options started at $47.50 and went down to $2.50 in increments of

$2.50 resulting in a stair step titration procedure originally aimed at experimentally

identifying the indifference point (rather than the likelihood function used in a

model-based approach). As soon as the subject chose the larger-later option the

descending trials stopped. The order of ascending and descending trials was

randomized. Because of this design, there is not a fixed trial size across individuals.

The number of trials for this task ranged from 16 to 149 trials, with a mean of 115

trials. This feature gives us the opportunity to explore the effect of trial size in

estimating k andm, with all other aspects of the experimental design equal.

Model fitting procedure. To estimate the model parameters for the

nonhierarchical model, we initialized three chains for 1,500 iterations with a burn-in

of 2,000 iterations, and sampled for 3,000 iterations, resulting in 9,000 samples of the

joint posterior distribution. To estimate the model parameters for the hierarchical

model, we initialized three chains for 1,500 iterations with a burn-in of 4,000

iterations, and sampled for 5,000 iterations, resulting in 15,000 samples of the joint

posterior distribution. Chains were visually assessed for convergence.
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Results

Nonhierarchical recovery. The nonhierarchical model accurately predicted

the probability of choosing a larger-later option, yet the estimates of k andmwere not

as expected. The nonhierarchical model very closely predicted the observed PLLs,

though there were a few cases of over- and under-estimations, particularly at lower

PLLs. However, an ability to recover the choice proportions in the data does not

guarantee that we can recover the generating parameters. This is partly because some

choice pairs are much more informative than others for different parts of the

parameter range. For example, a choice of $5 now vs. $50 in 1 week is more diagnostic

at extremely large values of k, while a choice of $47.50 now vs. $50 in 1 year will be

more diagnostic at extremely small values of k. Therefore, the right or wrong mixture

of choices could result in particularly good or bad estimation of the model parameters

even if it is able to accurately generate the observed choice proportions.

The left panel of Figure 2a shows the log-transformed parameter estimates for

the nonhierarchical model fit to each subject. Each point represents a subject’s mean

of the posterior for the log-transformed k (x-axis) and log-transformedm (y-axis)

estimates. The points also display the range of trials that subjects completed, where

the cyan circles denote fewer than 50 trials, green squares denote 50-69 trials, red

pluses denote 70-89 trials, and blue crosses denote more than 90 trials. The

nonhierarchical model had stark differences in parameter recovery across trial sizes in

the simulation study, so it is not surprising that this pattern also exists in the real

data. This is most noticeable with fewer trials (denoted by cyan circles in Figure 2a),

where subjects who completed fewer than 50 trials had the lowest log-transformedm

estimates and the highest log-transformed k estimates.

Because we do not know the true values of the k andm values for real data, we

cannot directly test the accuracy of the estimate, using a measure such as RMSE.

However, because we used a grid in the simulation study, we can get an idea of the

robustness of the estimates. Some of these estimated values fall on areas, found

through our simulation study, that are difficult to recover (evidenced by high RMSEs).
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Higher RMSEs also signify that the estimates are biased. These problematic points

were all with smallm and larger k values, and were present even with additional

trials. However, the majority of the estimates that were within the range of our

simulation study fell within areas with smallm and k values (less than 1 and 0.2,

respectively), which had small RMSEs in our simulation study.

Hierarchical recovery. A subject’s probability of choosing the larger-later

option was also accurately predicted in the hierarchical model. The hierarchical

model tended to overestimate smaller PLLs, which may be a result of the hierarchical

model’s tendency to pull outliers towards the population mean. However, this is only

a minor difference, and overall the model correctly predicts PLL. The right panel of

Figure 2a shows the log-transformed k andm estimates for the hierarchical model,

organized by trial number. Similar to the nonhierarchical model, there was a

relationship between trial size and parameter estimates. For example, the estimates

for 50 and fewer trials had smaller log-transformedm and larger log-transformed k

estimates.

Comparing the hierarchical and nonhierarchical parameter estimates, the range

of estimates was more constrained for the hierarchical estimates than for the

nonhierarchical estimates. This pattern was also observed in the simulation study

and demonstrates the property of shrinkage inherent to hierarchical models. Figure

2b directly compares an individual’s mean hierarchical and nonhierarchical estimates.

While the extreme values show the highest discrepancy, the estimates are still highly

correlated. The correlations between the nonhierarchical and hierarchical log(k)

estimates and log(m) estimates for the real data are 0.96 and 0.87 respectively.

Nonhierarchical and hierarchical constraint

When estimating latent parameters from real experimental data, we will never

know the true parameter values. Therefore, we are not able to use measures of

deviation between true and estimated values to evaluate the accuracy of the estimates

as we did in the simulation studies. However, we are still able to compare the
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posteriors of the estimates to the priors. If the data are uninformative, they will not

provide sufficient constraint and the posterior will subsequently resemble the prior.

Some of the nonhierarchical estimates for k andm had posterior means that are

outside the typical range we would observe in most sets of data and subjects. For

example, individual-level estimates of k values are usually small, but the

nonhierarchical model often had estimates much larger than 1, clustering at 5. Our

results from the simulation study suggest that these large values may be the result of

uncertainty, but when these individual estimates, Pr(data | individual), are

uncertain, they can be constrained in the hierarchical model by the marginal

Pr(individual | group) and prior Pr(group). To illustrate this phenomenon, Figure 3

shows the nonhierarchical (left) and hierarchical (right) joint k andm posteriors for

one representative subject, subject 42, who completed 31 trials total. The

nonhierarchical posterior for k in subject 42 is under-constrained, and resembles the

prior. This constraint problem was more prevalent in subjects with fewer trials, such

as subject 42, as both k andmwere more reliably estimated in general with a larger

number of trials. However, it is worth noting this nonhierarchical constraint problem

also existed in some subjects who completed more trials. For all under-constrained

subjects, the additional data provided by the hierarchical structure provided

significantly more constraint on the posterior.

Accurate parameter estimation also has an impact on our understanding of the

relationship between delay discounting and other variables of interest, such as

externalizing psychopathology (EXT). We compared the correlations between the

estimated parameters and the measures of EXT calculated in Finn et al. (2015), and

found that the parameters estimated in a hierarchical framework had stronger

correlations to EXT. The correlation between EXT and k was slightly higher for the

hierarchical estimates (ρ = 0.29), than for the nonhierarchical estimates (ρ = 0.24). The

discrepancy was larger for the correlations withm, where correlations between EXT

andmwere much more negative for the hierarchical estimates (ρ = -0.20), than for the

nonhierarchical estimates (ρ = -0.064). These differences in correlation exemplify the
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effect that an estimation procedure can have on theoretical conclusions.

Discussion

Accurately assessing individual temporal discounting curves should be an

obligation when generalizing to societal problems. Yet, we identified clear problems

with the recoverability of many representative forms of temporal discounting profiles,

and found that these problems are exacerbated when using an experimental design

with fewer trials. However, these problems need not be prohibitive for investigating

societal impacts of impulsive behavior. Instead, we have provided a simple solution

using hierarchical Bayesian estimation to effectively “pool” information across

subjects. In using this approach, we have shown that the previously identified

problematic temporal discounting profiles can be corrected.

Our findings have implications within model selection, design of intertemporal

choice tasks, and subject exclusion criteria. First, accurate recovery is essential in

modeling. While we only explored a simple two-parameter model, these results can

be generalized to alternative-wise models. In the Appendix, we present analytical

results that demonstrate why these misestimation problems occur with

alternative-wise models more generally. In fact, as the Appendix shows, not even

adding a utility parameter - which forms the most general intertemporal choice

model - can alleviate this misestimation problem. We note more informative priors

would help with constraining the model, even in the nonhierarchical case, to lead to

more accurate estimation. For example, the uniform prior on k consists of a larger

range of k values than those which are typically seen. However, while informative

priors aid in estimation, they require stronger assumptions about these unknown

parameters. Therefore, we would still recommend hierarchical models as they do not

make these assumptions instead providing a data-driven approach.

Additionally, misestimation can affect model selection criteria. For example,

Ericson, White, Laibson, and Cohen (2015) had issues with cross-validation using the

hyperbolic discounting model and therefore favored a heuristic model of
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intertemporal choice. These results could be explained by a failure to recover some k

andm values, resulting in difficulties predicting out-of-sample data. Second, delay

discounting parameters are often estimated using only twenty-seven trials, especially

in clinical contexts (Kirby et al., 1999). Our results suggest additional trials lead to

more accurate estimation, so if possible, having at least two to three times more trials

makes a significant difference in constraint and accuracy of estimates. Few trials may

be inadequate due to the fact that the hyperbolic curve parameterized with different k

andmpresents similar functional forms for some pairs of rewards and delays. Having

more trials can help distinguish between similar values of k andm. However, if this is

not feasible, the hierarchical framework can compensate for the lack of data and

provide significantly better estimates. Lastly, hierarchical models allow for the

inclusion of more subjects. Even subjects that choose exclusively larger-later or

smaller-sooner options are theoretically interesting, especially when studying

impulsivity. By pooling information across the entire group, a more diverse sample

can be studied. Overall, hierarchical Bayesian modeling can address many limitations

in studying delay discounting.
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Trials
30 50 70 150

Mean RMSE 2.384 2.355 1.971 1.636
Median SDposterior/SDprior 0.649 0.537 0.485 0.382

Table 1
Summary of nonhierarchical RMSE and SD ratios across 30, 50, 70, and 150 trials.
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Figure 1. Simulation Study Results. Panel a shows the problematic areas of recovery
obtained from the nonhierarchical simulation study. The first and second rows show
the results of parameter recovery of k (x-axis) andm (y-axis) for 30 and 150 generated
trials, respectively. The left column shows how close the estimated k andm values
were to the true k andm values, quantified by the root mean squared error (RMSE;
z-axis). The right column compares the prior and posteriors of the estimates,
quantified by dividing the standard deviation of the posterior by the standard
deviation of the prior. Red-orange colors denote a SD ratio of 1, i.e. the posterior
resembled the prior, whereas blue-green colors denote a more constrained posterior.
Panel b compares nonhierarchical and hierarchical parameter recovery. The first and
second rows (again for 30 and 150 trials, respectively) compare hierarchical (blue
points) and nonhierarchical (red points) estimates for k (left panels) andm (right
panels). The x-axis shows the simulated or “true” values used to generate the data,
and the y-axis shows the estimated parameter values using both hierarchical and
nonhierarchical methods. The black line signifies where the simulated and estimated
values are equivalent.
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Figure 2. Real data results. Row a shows the k andm estimates of experimental data
(Finn et al., 2015). Each point represents a subject’s k (x-axis) andm (y-axis) estimates
in a nonhierarchical (left) or hierarchical (right) framework. A point’s color and shape
signify the number of trials that subject completed, where the cyan circles are fewer
than 50 trials, green squares are 50-69 trials, red pluses are 70-89 trials, and blue
crosses are more than 90 trials. Row b shows the consistency between the
nonhierarchical (x-axis) and hierarchical(y-axis) estimates for log-transformed k (left)
andm (right). Each point represents mean estimates for a single subject.
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Figure 3. Hierarchical Constraint. Shows the nonhierarchical and hierarchical joint
posteriors. The marginal k (x-axis) andm (y-axis) posterior distributions for subject
42 are plotted as joint kernel density plots, for the nonhierarchical (left) and
hierarchical (right) estimates.
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Appendix

The limit problem: Hyperbolic case

To show the generalizability of our analyses, we demonstrate what happens to the

hyperbolic model, and to alternative-wise models in general, as we take informative

limits of the parameters in the model. The recovery issues of the hyperbolic model

mainly reflect the fact that one parameter can “overshadow" another. By overshadow,

we mean that one parameter can grow or shrink independently of another. This issue,

which we call here the limit problem, leads to extreme non-identifiability in the

alternative-wise models.

Recall that the hyperbolic model is given by the function:

H(x, t; k) = xρ

1 + kt
, (4)

where x is the objective amount, t ≥ 0 is the time delay, k ≥ 0 is our impulsivity

parameter, and ρ ≥ 0 is our utility parameter. As mentioned in the main text, we add

a utility parameter here to make the analyses more general. The probability that a

larger-later (LL) option will be chosen over a smaller-sooner (SS) option (which we

shorten to P (LL % SS)) is given by either a logistic function:

Pl(LL % SS) = 1
1 + exp(−mD) , (5)

or by a standard cumulative normal (CDF; Dai and Busemeyer 2014):

PN(LL % SS) = Φ
(
D

σ

)
= P (N ≤ D/σ), (6)

where D = H(LL)−H(SS) is the difference in utility between the LL and SS options,

σ indicates choice variability, and N ∼ Normal(0, 1). We interpret D > 0 to mean the

LL option is preferred on average, and D < 0 means that the SS option is preferred on

average. Note that by taking the appropriate limits, we can make the logistic model

mimic the normal CDF model. Thus, for simplicity we focus our limit arguments on
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the normal CDF. We emphasize, though, that model mimicry does not imply that the

parameters that enact the mimicry are the same between models (e.g., there are more

ways for the logistic model to converge to 1, say, than with the CDF model).

We note that Φ is a continuous function, since it is integration against another

continuous function (Folland, 2013). That is, a “passage of the limit” through the

cumulative distribution function is permissible: limx→x0 Φ(x) = Φ(x0) (Folland, 2013;

Ross, 1996).

The most relevant limit to our discussion concerns the case when k →∞.

Denote the LL option as ($y, s delay) and the SS option as ($x, t delay). The limit is

given by (holding σ fixed):

lim
k→+∞

Φ
(
D

σ

)
= lim

k→+∞
Φ
 yρ

1+ks −
xρ

1+kt
σ

→ Φ
(0− 0

σ

)
= 1/2. (7)

Equation (7) states that the hyperbolic model “converges” to a random chance model

as we increase k, meaning that the predicted choice is completely random as

impulsivity increases, as expected. Figure S1 shows what a “likelihood surface” (a G2

surface) would look like as a function of σ and k. For more details on how this figure

was generated, see the Supplementary Material. For this G2 surface, a larger value

indicates a poorer fit to the data; the convergence to the random chance model is

noted by the progressively poorer fit as k increases. Note of the steep climb towards

an upper bound. The surface also flattens out, regardless of the σ > 0, for increasing

k, so that larger parameter pairs will reproduce the same predicted data. This leads to

the extreme parameter recovery issues.

The hierarchical approach ameliorates this issue by constraining our search

(through a constrained prior) for k values to avoid getting stuck in the flat region,

where the model approximates a random chance model.

The limit behavior of the hyperbolic model is not relegated only to the

hyperbolic model. This generalizability arises from the convergence of the hyperbolic

model to a random chance model. As we saw from before, with k → +∞, we have
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Figure A1. The G2 surface for the (Stochastic) Hyperbolic Model. The surface is based
on simulated data generated from the median values of Dai et al. (2016). The middle
graph shows the “slice” of the surface at the true σ value; the k-axis is zoomed in. The
right-most panel shows the slice of the surface at the true k value. Note that while the
fit becomes better for larger σ (lower G2), the surface becomes flatter around the true
value, leading to great deviations between the estimated value and the true value.

D → 0. This is because the hyperbolic model is a decreasing function of k: with all

other variables held constant, H(x, t; k)→ 0 as k → +∞. This simply reflects the

interpretation of k: greater impulsivity should lead to greater discounting of delayed

rewards, with maximal discounting equivalent to ascribing zero subjective value to

any delayed reward. This is the prediction for any alternative-wise discounting

model. Therefore, these limit problems are not restricted to the hyperbolic model.

This is because, as the difference in utility between the options goes to zero, σ > 0

does not change with k. After applying the limit theorem, the ratio will go to zero,

making the probability (using either PN or Pl) converge to 1/2. Importantly, this will

happen for any alternative-wise model that requires subjective value to decrease with

greater impulsivity (which is effectively all of them), and what this subjective value is

becomes irrelevant for large k or σ. Hence, adding a utility parameter will not fix this

convergence issue. In addition, simply changing the base model of the

alternative-wise approach will not fix it, either, as long as the choice variability and
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impulsivity parameters are independent of one another. Thus, the results of the main

text apply to any alternative-wise model with independent parameters, not just the

hyperbolic model.
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